【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)
题目链接
题意:求\(\sum_{i=1}^{n}\gcd(i,n)\)
首先可以肯定,\(\gcd(i,n)|n\)。
所以设\(t(x)\)表示\(gcd(i,n)=x\)的\(i\)的个数。
那么答案很显然就是\(\sum_{d|n}t(d)*d\)。
那么\(t(x)\)怎么求呢。
\]
因为若\(\gcd(x,y)=1\),则有\(\gcd(xk,yk)=k\)。
所以
\]
所以最终答案就是\(\sum_{d|n}[\phi(\lfloor\frac{n}{d}\rfloor)*d]\)
我们可以在\(O(\sqrt n)\)的时间复杂度内求出\(n\)的所有约数,约数个数是\(\log n\)级别的,求\(\phi\)是\(O(\sqrt n)\)的时间复杂度,所以总时间复杂度\(O(\log n\sqrt n)\)
#include <cstdio>
#include <cmath>
using namespace std;
typedef long long ll;
ll n;
ll phi(ll x){
int s = sqrt(x); ll ans = x;
for(int i = 2; i <= s && x != 1; ++i)
if(!(x % i)){
ans = ans / i * (i - 1);
while(!(x % i))
x /= i;
}
if(x != 1) ans = ans / x * (x - 1);
return ans;
}
int main(){
scanf("%lld", &n);
int i; ll ans = 0;
for(i = 1; (ll)i * i < n; ++i)
if(!(n % i))
ans += phi(n / i) * i + (n / i) * phi(i);
if(i * i == n) ans += phi(i) * i;
printf("%lld\n", ans);
return 0;
}
【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)的更多相关文章
- 洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...
- 洛谷P2303 [SDOi2012]Longge的问题
题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- [洛谷P5106]dkw的lcm:欧拉函数+容斥原理+扩展欧拉定理
分析 考虑使用欧拉函数的计算公式化简原式,因为有: \[lcm(i_1,i_2,...,i_k)=p_1^{q_{1\ max}} \times p_2^{q_{2\ max}} \times ... ...
- [SDOI2012] Longge的问题 - 欧拉函数
求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- bzoj 2705 [SDOI2012]Longge的问题——欧拉函数大水题
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n ...
随机推荐
- lintcode-13-字符串查找
字符串查找 对于一个给定的 source 字符串和一个 target 字符串,你应该在 source 字符串中找出 target 字符串出现的第一个位置(从0开始).如果不存在,则返回 -1. 说明 ...
- JavaScript数组自定义属性
我们可以以json键值对的形式自定义属性. 首先定义一个JS数组JSarray. 然后按json键值对的形式进行赋值. 最后在控制台显示结果. 代码如下: var JSarray = new Arra ...
- 3ds Max学习日记(八)
再来更新一波学习进度. 之前玩了一下3dsmax里的灯光,不过由于和教程里的版本不同,教程里的我的没有,我有的教程又没有,所以只能瞎jb玩一玩. 最近又想建个人物模型玩玩,于是上网搜一下有 ...
- php裁剪图片(支持定点裁剪)
/** * 图片裁剪函数,支持指定定点裁剪和方位裁剪两种裁剪模式 * @param <string> $src_file 原图片路径 * @param <int> $new_w ...
- jsp文件过大,is exceeding 65535 bytes limit
今天修改配置项的时候,遇到了一个异常,Generated servlet error:The code of method _jspService(HttpServletRequest, HttpSe ...
- openstack之keystone部署
前言 openstack更新频率是挺快的,每六个月更新一次(命名是是以A-Z的方式,Austin,Bexar...Newton).博主建议大家先可一种版本研究,等某一版本研究透彻了,在去研究新的版本. ...
- hadoop的第一个hello world程序(wordcount)
在hadoop生态中,wordcount是hadoop世界的第一个hello world程序. wordcount程序是用于对文本中出现的词计数,从而得到词频,本例中的词以空格分隔. 关于mapper ...
- CentOS 用户管理useradd、usermod等
1.创建新用户useradd,默认的用户家目录会被存放在/home 目录中,默认的 Shell 解释器为/bin/bash,而且默认会创建一个与该用户同名的基本用户组. 主要参数: -d 指定用户的家 ...
- BZOJ5334:[TJOI2018]数学计算——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5334 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型: 1 m: x = x ...
- mmc驱动的读写过程解析
mmc io的读写从mmc_queue_thread()的获取queue里面的request开始. 先列出调用栈,看下大概的调用顺序, 下面的内容主要阐述这些函数如何工作. host->ops- ...