P1349 广义斐波那契数列
题目描述
广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。
输入输出格式
输入格式:
输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。
输出格式:
输出包含一行一个整数,即an除以m的余数。
输入输出样例
1 1 1 1 10 7
6
说明
数列第10项是55,除以7的余数为6。
Solution:
本题基本算是一道矩阵加速模板了,直接构造一手矩阵:
\begin{bmatrix} a2& a1\end{bmatrix} 以及中间矩阵 \begin{bmatrix} p & 1 \\ q & 0 \end{bmatrix}
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define mem(p) memset(&p,0,sizeof(p))
using namespace std;
ll pp,q,a1,a2,n,m;
struct mat{ll a[][],r,c;};
il mat mul(mat x,mat y)
{
mat p;
mem(p);
for(int i=;i<x.r;i++)
for(int j=;j<y.c;j++)
for(int k=;k<x.c;k++)
p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j])%m;
p.r=x.r,p.c=y.c;
return p;
}
il void fast(ll k)
{
mat p,ans;
mem(p),mem(ans);
p.r=p.c=;
p.a[][]=pp,p.a[][]=,p.a[][]=q;
ans.r=,ans.c=;
ans.a[][]=a2,ans.a[][]=a1;
while(k)
{
if(k&)ans=mul(ans,p);
k>>=;
p=mul(p,p);
}
cout<<ans.a[][];
}
int main()
{
ios::sync_with_stdio();
cin>>pp>>q>>a1>>a2>>n>>m;
if(n==)cout<<a1%m;
else if(n==)cout<<a2%m;
else fast(n-);
return ;
}
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define mem(p) memset(&p,0,sizeof(p))
using namespace std;
ll pp,q,a1,a2,n,m;
struct mat{ll a[3][3],r,c;};
il mat mul(mat x,mat y)
{
mat p;
mem(p);
for(int i=0;i<x.r;i++)
for(int j=0;j<y.c;j++)
for(int k=0;k<x.c;k++)
p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j])%m;
p.r=x.r,p.c=y.c;
return p;
}
il void fast(ll k)
{
mat p,ans;
mem(p),mem(ans);
p.r=p.c=2;
p.a[0][0]=pp,p.a[0][1]=1,p.a[1][0]=q;
ans.r=1,ans.c=2;
ans.a[0][0]=a2,ans.a[0][1]=a1;
while(k)
{
if(k&1)ans=mul(ans,p);
k>>=1;
p=mul(p,p);
}
cout<<ans.a[0][0];
}
int main()
{
ios::sync_with_stdio(0);
cin>>pp>>q>>a1>>a2>>n>>m;
if(n==1)cout<<a1%m;
else if(n==2)cout<<a2%m;
else fast(n-2);
return 0;
}
P1349 广义斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- 洛谷——P1349 广义斐波那契数列
题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...
- Luogu P1349 广义斐波那契数列
解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...
- 洛谷P1349 广义斐波那契数列
传送门 话说谁能告诉我矩阵怎么用latex表示…… 差不多就这样 //minamoto #include<iostream> #include<cstdio> #include ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
随机推荐
- 成都Uber优步司机奖励政策(3月22日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 成都Uber优步司机奖励政策(3月9日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- java-IO处理类的序列化与反序列化
package TestIo; import java.io.*; /** * 序列化 * * * 对象序列化 * * 一 创建对象 需要说明,想序列化的对象一定要是实现Serivalizable接口 ...
- iOS性能调优工具
总结: 三类工具 基础工具 (NSLog的方式记录运行时间.) 性能工具.检测各个部分的性能表现,找出性能瓶颈 内存工具.检查内存正确性和内存使用效率 性能工具: 可以衡量CPU的使用,时间的消耗,电 ...
- java中i=i++的解析
int i = 0; i = i++; //答案是0 System.out.println(i); 执行以上代码,奇怪的是打印出来i的结果是0,说简单点,i++是一个表达式,是有返回值的,返回的是自增 ...
- MySQL日期函数、时间函数总结(MySQL 5.X)
一.获得当前日期时间函数 1.1 获得当前日期+时间(date + time)函数:now() select now(); # :: 除了 now() 函数能获得当前的日期时间外,MySQL 中还有下 ...
- Linux用户切换和密码修改
1.普通用户切换到root su - 再输入root密码,密码正确,成功切换,再输入exit则切换回普通用户 2.root切换到其他用户,例user su - user 再输入exit,则切换回roo ...
- 程序迭代时测试操作的要点(后端&前端)
今晚直播课内容简介,视频可点击链接免费听 <程序迭代时测试操作的要点(后端&前端)> ===== 1:迭代时后台涉及的操作有哪些?如何进行 a.更新war包:用于访问web\app ...
- Git 与 GitHub
Git 这个年代,不会点Git真不行啦,少年别问问什么,在公司你就知道了~ Git是一个协同开发的工具,主要作用是进行版本控制,而且还能自动检测代码是否发生变化. 一. 安装 下载地址:https:/ ...
- Linux命令应用大词典-第45章 服务器配置
45.1 ssh-agent:存储用于公钥验证的私钥 45.2 ssh-add:添加RSA或DSA身份的认证代理 45.3 ssh-keyscan:收集主机公钥 45.4 sshd:运行sshd守护进 ...