题目描述

广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。

输入输出格式

输入格式:

输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。

输出格式:

输出包含一行一个整数,即an除以m的余数。

输入输出样例

输入样例#1:

1 1 1 1 10 7
输出样例#1:

6

说明

数列第10项是55,除以7的余数为6。

Solution:

  本题基本算是一道矩阵加速模板了,直接构造一手矩阵:

  \begin{bmatrix} a2& a1\end{bmatrix} 以及中间矩阵 \begin{bmatrix} p & 1 \\ q & 0 \end{bmatrix}

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define mem(p) memset(&p,0,sizeof(p))
using namespace std;
ll pp,q,a1,a2,n,m;
struct mat{ll a[][],r,c;};
il mat mul(mat x,mat y)
{
mat p;
mem(p);
for(int i=;i<x.r;i++)
for(int j=;j<y.c;j++)
for(int k=;k<x.c;k++)
p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j])%m;
p.r=x.r,p.c=y.c;
return p;
}
il void fast(ll k)
{
mat p,ans;
mem(p),mem(ans);
p.r=p.c=;
p.a[][]=pp,p.a[][]=,p.a[][]=q;
ans.r=,ans.c=;
ans.a[][]=a2,ans.a[][]=a1;
while(k)
{
if(k&)ans=mul(ans,p);
k>>=;
p=mul(p,p);
}
cout<<ans.a[][];
}
int main()
{
ios::sync_with_stdio();
cin>>pp>>q>>a1>>a2>>n>>m;
if(n==)cout<<a1%m;
else if(n==)cout<<a2%m;
else fast(n-);
return ;
}

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define mem(p) memset(&p,0,sizeof(p))
using namespace std;
ll pp,q,a1,a2,n,m;
struct mat{ll a[3][3],r,c;};
il mat mul(mat x,mat y)
{
    mat p;
    mem(p);
    for(int i=0;i<x.r;i++)
        for(int j=0;j<y.c;j++)
            for(int k=0;k<x.c;k++)
    p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j])%m;
    p.r=x.r,p.c=y.c;
    return p;
}
il void fast(ll k)
{
    mat p,ans;
    mem(p),mem(ans);
    p.r=p.c=2;
    p.a[0][0]=pp,p.a[0][1]=1,p.a[1][0]=q;
    ans.r=1,ans.c=2;
    ans.a[0][0]=a2,ans.a[0][1]=a1;
    while(k)
    {
        if(k&1)ans=mul(ans,p);
        k>>=1;
        p=mul(p,p);
    }
    cout<<ans.a[0][0];
}
int main()
{
    ios::sync_with_stdio(0);
    cin>>pp>>q>>a1>>a2>>n>>m;
    if(n==1)cout<<a1%m;
    else if(n==2)cout<<a2%m;
    else fast(n-2);
    return 0;
}

P1349 广义斐波那契数列的更多相关文章

  1. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  2. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  3. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  4. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  5. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  6. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  7. Luogu P1349 广义斐波那契数列

    解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...

  8. 洛谷P1349 广义斐波那契数列

    传送门 话说谁能告诉我矩阵怎么用latex表示…… 差不多就这样 //minamoto #include<iostream> #include<cstdio> #include ...

  9. 矩阵乘法快速幂 codevs 1574 广义斐波那契数列

    codevs 1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 广义的斐波那契数列是指形如 ...

随机推荐

  1. 北京Uber优步司机奖励政策(12月21日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. 北京Uber优步司机奖励政策(10月5日~10月11日)

    用户组:优步北京人民优步A组(适用于10月5日-10月11日) 滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/ ...

  3. 人脸检测库libfacedetection介绍

    libfacedetection是于仕琪老师放到GitHub上的二进制库,没有源码,它的License是MIT,可以商用.目前只提供了windows 32和64位的release动态库,主页为http ...

  4. crash:EXC_ARM_DA_ALIGN(关于内存对齐,memcpy)

    crash:EXC_ARM_DA_ALIGN(关于内存对齐,memcpy) 问题描述 在iOS game开发时做内存拷贝时出现了 crash:EXC_ARM_DA_ALIGN,debug版本不会出现, ...

  5. Redis系列一 Redis安装

    Redis系列一    Redis安装 1.安装所使用的操作系统为Ubuntu16.04 Redis版本为3.2.9 软件一般下载存放目录为/opt,以下命令操作目录均为/opt root@ubunt ...

  6. java 二叉树的创建 遍历

    本来说复习一下BFS和DFS,辗转就来到了二叉树...本文包括二叉树的创建和遍历 概念 数据:1 2 3 4 5 6 7生成一颗二叉树 上面的数是数据,不是位置,要区别一下数据和位置 红色的代表位置, ...

  7. cf#516C. Oh Those Palindromes(最多回文子串的字符串排列方式,字典序)

    http://codeforces.com/contest/1064/problem/C 题意:给出一个字符串,要求重新排列这个字符串,是他的回文子串数量最多并输出这个字符串. 题解:字典序排列的字符 ...

  8. 【WXS全局对象】consloe

    consloe对象 方法: 原型:console.log( [String] ) 说明:用于在 console 窗口输出信息,一般用于程序调试使用示例: console.log支持arguments类 ...

  9. Python全栈 Web(边框、盒模型、背景)

    原文地址 https://yq.aliyun.com/articles/634926 ......................................................... ...

  10. lintcode50 数组剔除元素后的乘积

    数组剔除元素后的乘积 给定一个整数数组A. 定义B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], 计算B的时候请不要使用除法. 您在真实的面试中是 ...