bzoj4332[JSOI2012]分零食
一下午被这题的精度续掉了...首先可以找出一个多项式的等比数列的形式,然后类似poj的Matrix Series,不断倍增就可以了.用复数点值表示进行多次的多项式运算会刷刷地炸精度...应当用int存多项式,然后卷积的时候再dft成复数,卷积之后idft回实数.注意两个m次的多项式卷积之后会变成2m次的多项式,多项式的后一半需要清零.
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=**;
#define double long double
const double pi=acos(-);
struct comp{
double x,y;
comp(){}
comp(double a,double b){x=a;y=b;}
comp operator +(const comp &a){return comp(x+a.x,y+a.y);}
comp operator -(const comp &a){return comp(x-a.x,y-a.y);}
comp operator *(const comp &a){return comp(x*a.x-y*a.y,x*a.y+y*a.x);}
} ;//a:存储原始多项式 b:存储原始多项式的卷积 c:存储答案 d:存储原多项式的n/2次方
int mod;
int a[maxn],c[maxn],d[maxn],e[maxn];
void fft(comp* a,int n,int sign){
for(int i=,j=,k=n;i<n;++i,k=n){
do j^=(k>>=);while(j<k);if(i<j)swap(a[i],a[j]);
}
for(int j=;j<=n;j<<=){
int m=j>>;comp wn(cos(pi*/j),sign*sin(pi*/j));
for(comp *p=a;p!=a+n;p=p+j){
comp w(,);
for(int k=;k<m;++k,w=w*wn){
comp t=p[m+k]*w;p[m+k]=p[k]-t;p[k]=p[k]+t;
}
}
}
if(sign==-){
for(int i=;i<n;++i)a[i].x/=n;
}
}
int N=;int m;
int mo(double x){
return (((int)floor(x+0.5))%mod+mod)%mod;
}
void mult(int *a,int *b,int *res){
static comp tmp1[maxn],tmp2[maxn];
for(int i=;i<N;++i)tmp1[i]=comp(a[i],),tmp2[i]=comp(b[i],);
fft(tmp1,N,);fft(tmp2,N,);
for(int i=;i<N;++i)tmp1[i]=tmp1[i]*tmp2[i];
fft(tmp1,N,-);
for(int i=;i<N;++i)res[i]=mo(tmp1[i].x);
}
void qsum(int n){
if(n==){
for(int i=;i<N;++i)c[i]=a[i];
for(int i=;i<N;++i)d[i]=a[i];
}else{
qsum(n>>);
mult(c,d,e);
//for(int i=0;i<N;++i)
//e[i]=c[i]*d[i]+c[i];
for(int i=;i<N;++i)c[i]=mo(c[i]+e[i]);
memset(c+(N>>),,sizeof(comp)*(N>>));
if(n&){
mult(c,a,e);
for(int i=;i<N;++i)c[i]=mo(a[i]+e[i]);
memset(c+(N>>),,sizeof(comp)*(N>>));
} mult(d,d,d);
memset(d+(N>>),,sizeof(comp)*(N>>)); if(n&){
mult(d,a,d);
memset(d+(N>>),,sizeof(comp)*(N>>));
} }
}
int main(){
scanf("%d%d",&m,&mod);
int n,o,s,u;scanf("%d%d%d%d",&n,&o,&s,&u);
n=min(n,m);
for(int i=;i<=m;++i){
int t=i%mod;
a[i]=(o*t*t+s*t+u)%mod;
}
while(N<=m)N<<=;N<<=;
qsum(n);printf("%d\n",c[m]);
return ;
}
bzoj4332[JSOI2012]分零食的更多相关文章
- BZOJ4332 JSOI2012 分零食 【倍增 + NTT】
题目链接 权限题BZOJ4332 题解 容易想到\(dp\) 设\(g[i][j]\)表示前\(i\)人分到\(j\)颗糖的所有方案的乘积之和 设\(f(x) = Ox^2 + Sx + U\) \[ ...
- bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治+FFT)
https://www.lydsy.com/JudgeOnline/problem.php?id=4332 因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果. 所以设g[i][j] ...
- 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)
4332: JSOI2012 分零食 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 119 Solved: 66 Description 这里是欢乐 ...
- [BZOJ 4332] [JSOI2012]分零食(DP+FFT)
[BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...
- bzoj4332;vijos1955:JSOI2012 分零食
描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...
- bzoj 4332:JSOI2012 分零食
描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...
- bzoj 4332: JSOI2012 分零食 快速傅立叶变换
题目: Description 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\) 现 ...
- [洛谷P5075][JSOI2012]分零食
题目大意:有$m(m\leqslant10^8)$个人站成一排,有$n(n\leqslant10^4)$个糖果,若第$i$个人没有糖果,那么第$i+1$个人也没有糖果.一个人有$x$个糖果会获得快乐值 ...
- BZOJ 4332: JSOI2012 分零食 FFT+分治
好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...
随机推荐
- python2和python3的一些区别
性能:py3.x起始比py2.x效率低,但是py3.x有极大的优化空间,效率正在追赶. 编码:py3原码文件默认utf-8编码,使得变量名更为广阔. 语法:1,去除了 <> ,改用了 ...
- 在线tidb+tipd+tikv扩容,迁移,从UC到阿里云
集群现状: 共有五个节点,配置为16核32g内存,数据节点为1T ssd盘,非数据节点为100g ssd盘: 角色规划: node1 tidb tipd node2 tidb tipd node3 t ...
- OKVIS(一)初始化流程及代码结构
OKVIS代码结构: okvis_apps: your own app okvis_ceres: backend main code, estimator, error term; okvis_co ...
- (转)EDM邮件制作规范完整版
转载:http://www.maildesign.cn/archives/1380 在我们的日常工作中,经常需要发送邮件和我们的会员沟通.如注册确认.营销推广等.这些由站方发给会员的信件,往往纯文本格 ...
- 2019年猪年海报PSD模板-第六部分
14套精美猪年海报,免费猪年海报,下载地址:百度网盘,https://pan.baidu.com/s/1WdlIiIdj1VVWxI4je0ebKw
- 为什么测试人员必须掌握Linux?
相信点进来的小伙伴不是对Linux感兴趣就是对测试感兴趣了,也希望本文可以帮助之前接触过Linux的小伙伴找到继续坚持学习下去的动力,之前没接触过Linux的小伙伴也能找到开始学习Linux的兴趣. ...
- SQL 怎么实现模糊查询?
执行数据库查询时,有完整查询和模糊查询之分. 一般模糊语句格式如下: SELECT 字段 FROM 表 WHERE 某字段 LIKE 条件; 其中,关于条件,SQL提供了四种匹配模式: 一.%:表示零 ...
- TPO-15 C1 The campus newspaper's reporter position
TPO-15 C1 The campus newspaper's reporter position 第 1 段 1.Listen to a conversation between a Studen ...
- 【WXS】变量定义保留标识符
以下字符不能作为变量名称定义: delete void typeof null undefined NaN Infinity var if else true false require this f ...
- leetcode-单词探索
单词搜索 给定一个二维网格和一个单词,找出该单词是否存在于网格中. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格.同一个单元格内的字母 ...