ZOJ1081:Points Within——题解
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1081
题目大意:给定一个点数为 n 的多边形,点按照顺序给出,再给出 m 个点,询问每个点是否在多边形内。
——————————————————————————————
计算几何开荒期,所以都算是板子吧……既然是板子那么题解自然也都是集网上之大成。
所以以后也就不多说了。正式往下看题解吧。
——————————————————————————————
这是一道求点是否在一个多边形内的题。
对这道题我们有两种算法,第二种太麻烦了就不讲了。
第一种为射线法:即我们有一个点,向左(右)水平做一道射线,求出射线与四边形交点个数,如果个数为奇数则在这里面。
但是如果交在线段端点上时我们需要规定交在边的下端点统计进答案或是交在边的上端点统计进答案(也就是保证一个点要么都被统计要么都不被统计)。
判断端点序号的坐标上下关系用叉乘,顺便可以判断该点是否在边上。
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long ll;
const int M=;
const int N=;
const int INF=*N;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct point{//既是向量又是点
int x;
int y;
}q[N],p;
int n,m,cnt;
inline point getmag(point a,point b){
point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline int multiX(point a,point b){
return a.x*b.y-b.x*a.y;
}
inline int multiP(point a,point b){
return a.x*b.x+a.y*b.y;
}
bool pan(){
int sum=;
for(int i=;i<=n;i++){
int d=multiX(getmag(p,q[i]),getmag(p,q[i%n+]));
if(!d){//三点共线
if(multiP(getmag(p,q[i]),getmag(p,q[i%n+]))<=)return ;//是否在线段上
}
int d1=q[i].y-p.y;
int d2=q[i%n+].y-p.y;
if(d>&&d1>=&&d2<)sum++;
if(d<&&d1<&&d2>=)sum++;
}
if(sum%)return ;
return ;
}
int main(){
while(scanf("%d",&n)!=EOF&&n){
m=read();
cnt++;
if(cnt!=)putchar('\n');
for(int i=;i<=n;i++){
q[i].x=read();
q[i].y=read();
}
printf("Problem %d:\n",cnt);
for(int i=;i<=m;i++){
p.x=read();
p.y=read();
if(pan())puts("Within");
else puts("Outside");
}
}
return ;
}
ZOJ1081:Points Within——题解的更多相关文章
- ZOJ1081 Points Within 点和多边形的位置关系
ZOJ1081 给一个点和一个多边形 判断点在多边形内(边上)还是在多边形外 在多边形外的点引一条射线必然穿过多边形的两条边 而在多边形内的点则不一定. 当然凹多边形有特殊情况 但是总能找到对应位置关 ...
- ZOJ1081 Points Within
嘟嘟嘟 题面:给一个\(n\)个点的多边形和\(m\)个点,判断每一个点是否在多边形内. 解法:射线法. 就是从这个点引一条射线,如果与多边形有奇数个交点,则在多边形内部. 那么只用枚举每一条边,然后 ...
- 题解 CF576C 【Points on Plane】
题解 CF576C [Points on Plane] 一道很好的思维题. 传送门 我们看这个曼哈顿距离,显然如果有一边是按顺序排列的,显然是最优的,那另一边怎么办呢? 假如你正在\(ioi\)赛场上 ...
- [LeetCode]题解(python):149-Max Points on a Line
题目来源: https://leetcode.com/problems/max-points-on-a-line/ 题意分析: 在一个2D的板上面有很多个点,判断最多有多少个点在同一条直线上. 题目思 ...
- Codeforces 1140F Extending Set of Points 线段树 + 按秩合并并查集 (看题解)
Extending Set of Points 我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和. 然后就变成了一个并查集的问题, 但是这个题目里面有撤 ...
- [LeetCode] Max Points on a Line 题解
题意 Given n points on a 2D plane, find the maximum number of points that lie on the same straight lin ...
- Codeforces Round #624 (Div. 3) F. Moving Points 题解
第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...
- 「题解」「CF850A」Five Dimensional Points
题目 点这里 题解 本题暴力可过,细节不必多说. 这里我主要是说明一下为什么当 \(n>11\) 时可以直接输出 \(0\) . 首先,思考二维空间中,我们能保证最多能同时存在多少点,而还有好点 ...
- CodeForces 430A Points and Segments (easy)(构造)题解
题意:之前愣是没看懂题意...就是给你n个点的坐标xi,然后还规定了Li,Ri,要求给每个点染色,每一组L,R内的点红色和黑色的个数不能相差大于1个,问你能不能染成功,不能输出-1,能就按照输入的顺序 ...
随机推荐
- 你的APK安全吗?来WeTest免费测!
腾讯安全联合实验室就曾在<2018上半年互联网黑产研究报告>指出,移动端黑产规模宏大,恶意推广日均影响用户超过千万. 尤其在网络强相关的APP流行年代,当APP应用客户端上传与获取信息,大 ...
- hdu1312Red and Black(迷宫dfs,一遍)
Red and Black Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- Qt 独立运行时伴随CMD命令窗口
用Qt写了一个小软件,在把程序release后,打包分装后,发现程序运行的时候会伴随cmd命令窗口,可把我愁怀了 不过功夫不负有心人,在老师和我网友的帮助下,终于搞完了 CONFIG:指定工程配置和编 ...
- Selenium 入门到精通系列:三
Selenium 入门到精通系列 PS:Driver_Element 常用方法 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2 ...
- vuex-Actions的用法
Action 类似于 mutation,不同在于: Action 提交的是 mutation,而不是直接变更状态. Action 是异步的,mutation是同步的. 沿用vuex学习---简介的案例 ...
- 查找 二叉树中 k1 到 k2区间的节点
vector<int> res; int key1, key2; void traverse(TreeNode * root){//采用前序遍历 if(root == NULL) retu ...
- [HNOI2018]转盘
[HNOI2018]转盘 给你一个 \(n\) 元环, 你可以在 \(0\) 时刻从任意一个位置出发, 每一秒可以选择往后或者留在原地每个点有个参数 \(T_i\) , 当你走到 \(i\) 的时间 ...
- numpy切片和布尔型索引
numpy 标签(空格分隔): numpy 数据挖掘 切片 数组切片是原始数组的视图.这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上 In [16]: arr Out[16]: arr ...
- Entity Framework 基本概念
概念 LINQ to Entities 一种 LINQ 技术,使开发人员可以使用 LINQ 表达式和 LINQ 标准查询运算符,针对实体数据模型 (EDM) 对象上下文创建灵活的强类型化查询. ESQ ...
- 软件工程第二周PSP