NOIP 2012 Day2
tags:
- 扩展欧几里得
- 二分答案
- 查分
- 倍增
- 二分答案
- 贪心
- NOIP
categories: - 信息学竞赛
- 总结
同余方程
Solution
首先同余式可以转化为等式.
\]
根据扩展欧几里得定理, 对于式
#### Code
```c++
#include<cstdio>
void exgcd(int a,int b,int &x,int &y){
if(!b){
x=1,y=0;return ;
}
exgcd(b,a%b,y,x);
y-=x*(a/b);
}
int main(){
int a,b,x,y;
scanf("%d%d",&a,&b);
exgcd(a,b,x,y);
printf("%d",(x%b+b)%b);
return 0;
}
```
### 借教室
#### Solution
可以发现近些年 NOIP 总是出**二分答案**的题.
其实就是给出一些操作, 每次对一定区间减去一个数, 求在哪次操作之后产生了负数.然而可以用线段树强行做, 也可以用一些巧妙一点的办法.
- 线段树, 只需要有**区间加操作**和查询**区间最小值**操作, 一般线段树可以拿到95分, 还可以用可以各种**卡常技巧**, **zkw线段树**或者是**标记永久化**来加快.
- 二分一个值$\text{T}$, 表示前$\text{T}$次借教室后会不会出现不合法情况(*即某天教室只剩下负数间*), 然后用**差分**借完$T$次教室后每一天剩下的教室数.这个一般情况是不会被卡的.**注意对于答案的记录.**
#### Code
```c++
#include<cstring>
#include<cstdio>
#define N 1000055
#define inf 0x3f3f3f3f
#define int long long
struct Node{
int l,r,s;
void init(){scanf("%lld%lld%lld",&s,&l,&r);}
}s[N];
int n,m,d[N];
int qi[N];
int ans;
int min(int a,int b){
return a<b?a:b;
}
bool check(int tim){
qi[0]=0;
for(int i=1;i<=n;++i)
qi[i]=d[i]-d[i-1];
for(int i=1;i<=tim;++i)
qi[s[i].l]-=s[i].s,qi[s[i].r+1]+=s[i].s;
int he=0;
for(int i=1;i<=n+1;++i){he+=qi[i];if(he<0){ans=min(ans,tim);return false;}}
return true;
}
main(){
ans=inf;
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)
scanf("%lld",&d[i]);
for(int i=1;i<=m;++i)
s[i].init();
int l=1,r=m,mid;
while(l<=r){
mid=(l+r)>>1;
if(!check(mid))
r=mid-1;
else l=mid+1;
}
if(l>=m)
printf("0");
else printf("-1\n%lld",ans);
return 0;
}
```
### 疫情控制
并不是很明白为什么一天会出两道二分答案的题目...
首先二分一个值$\text{T}$, 表示在$\text{T}$时刻内能封锁这棵树
还是有一个很重要的贪心策略, 就是一个点在到达根节点之前总是越往上走越好.然后根据**倍增**确定出每个点在给定时间$\text{T}$所到达的最高点(*根节点为终点*). 必然有一些点到达不了根节点, 那么就让它来控制这个点; 必然有在不同时间到达根节点的点, 这些点可以去控制根节点的不同没被控制的子树; 所以最后找出所有**没有被控制的树点**和**能到达根节点的军队**进行贪心即可.
细节太多了, 很讨厌呐.\]
NOIP 2012 Day2的更多相关文章
- noip 2012 Day2 T2 借教室
一.暴力简述 甩链接.jpeg 首先我们不难看出,这道题————并不是一道多难的题,因为显然,第一眼看题目时便很容易地想到暴力如何打:枚举每一种订单,然后针对每一种订单,对区间内的每一天进行修改(做减 ...
- NOIp 2012 #2 借教室 Label:区间修改线段树
题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然 ...
- NOIp 2012 #1 Vigenère 密码 Label:模拟
题目描述 16 世纪法国外交家 Blaise de Vigenère 设计了一种多表密码加密算法――Vigenère 密 码.Vigenère 密码的加密解密算法简单易用,且破译难度比较高,曾在美国南 ...
- NOIP 2012 Day2T2 借教室题解
NOIP 2012 Day2T2 借教室题解 题目传送门:http://codevs.cn/problem/1217/ 题目描述 Description 在大学期间,经常需要租借教室.大到院系举办活动 ...
- NOIP 2012 T5 借教室 [洛谷P1083]
题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要 向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自 ...
- 【NOIP 2012 疫情控制】***
题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散 ...
- 【NOIP 2012 开车旅行】***
题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的 城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 ...
- 【NOIP 2012 国王游戏】 贪心+高精度
题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右 手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排 成一排,国王站在队伍 ...
- NOIP 2012 Vigenère 密码
洛谷 P1079 Vigenère 密码 https://www.luogu.org/problemnew/show/P1079 JDOJ 1779: [NOIP2012]Vigenèr密码 D1 T ...
随机推荐
- 洛谷3258:[USACO2012 MAR]Flowerpot 花盆——题解
https://www.luogu.org/problemnew/show/P2698#sub 老板需要你帮忙浇花.给出N滴水的坐标,y表示水滴的高度,x表示它下落到x轴的位置. 每滴水以每秒1个单位 ...
- Git 常用操作(一)
使用git pull文件时和本地文件冲突: $ git stash $ git pull $ git stash pop stash@{0} [还原暂存的内容] 上传项目流程: pwd git p ...
- [CEOI2017]Mousetrap
P4654 [CEOI2017]Mousetrap 博弈论既视感 身临其境感受耗子和管理的心理历程. 以陷阱为根考虑.就要把耗子赶到根部. 首先一定有解. 作为耗子,为了拖延时间,必然会找到一个子树往 ...
- linux 小技巧
http://blog.csdn.net/xianjie0318/article/details/75712990 1.按内存从大到小排列进程: ps -eo "%C : %p : % ...
- 【Android开发】范例1-绘制Android的机器人
下面这个实例通过前面学过的Paint.Canvas等2D绘画技术来实现在手机屏幕上绘制Android机器人的小实例. 具体代码实现和效果: 用来显示自定义的绘图类的布局文件 res/layout/ma ...
- Train-net流程
- python2.6升级2.7导致yum无法使用 No module named yum
这里有解决方法:https://teddysun.com/473.html 记住旧版本 Python 2.6.6 的重要路径如下所示,在运行 yum 命令的时候,会提示你哪个 module 不存在,不 ...
- 002.比较vector对象是否相等
1.使用vector模板 //编写一段程序,比较vector对象是否相等 //注:该例类似于一个[彩票游戏] #include <iostream> #include <ctime& ...
- Linux修改服务器ip
Linux基础二(修改ip地址.修改网关.修改DNS服务器.重新启动网络配置) 网络的初始化 .ip地址的修改(临时生效) 使用ifconfig命令 ifconfig 网卡名 ip地址 netma ...
- Java实现二叉树的先序、中序、后序、层序遍历(递归和非递归)
二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易 ...