转:http://www.zhizhihu.com/html/y2011/3228.html

l  Theory

n  Introduction

u  Unsupervised learning by probabilistic latent semantic analysis.

u  Latent dirichlet allocation.

u  Finding scientific topics.

u  Rethinking LDA: Why Priors Matter

u  On an equivalence between PLSI and LDA

n  Variations

u  Correlated Topic Models.

u  Hierarchical topic models and the nested Chinese restaurant process.

u  Hierarchical Dirichlet processes.

u  Nonparametric Bayes pachinko allocation.

u  Topic Models with Power-Law Using Pitman-Yor Process

u  Supervised topic models.

u  Topic Models Conditioned on Arbitrary Features withDirichlet-multinomial Regression

u  Discriminative Topic Modeling based on Manifold Learning

u  Interactive Topic Modeling

u  Mixtures of hierarchical topics with pachinko allocation

u  Incorporating domain knowledge into topic modeling via DirichletForest priors

u  Conditional topic random fields

u  Markov random topic fields

u  A two-dimensional topic-aspect model for discovering multi-facetedtopics

u  Generalized component analysis for text with heterogeneousattributes

n  Inference

u  Gibbs Sampling:

l  Finding scientific topics.

l  Parameter estimation for text analysis

l  Fast collapsed gibbs sampling for latent dirichlet allocation

l  Distributed inference for latent dirichlet allocation

u  Variational EM

l  Latent dirichlet allocation.

n  Evaluation

u  Reading tea leaves: How humans interpret topic models.

u  Evaluation Methods for Topic Models

n  Online learning and scalability

u  On-line LDA: Adaptive topic models for mining text streams withapplications to topic detection and tracking

u  Online variational inference for the hierarchical Dirichlet process.

u  Online Learning for Latent Dirichlet Allocation

u  Efficient Methods for Topic Model Inference on Streaming DocumentCollections

u  Online Multiscale Dynamic Topic Models

l  Applications

n  Classification

u  DiscLDA: Discriminative learning for dimensionality reduction andclassification

u  Labeled LDA: A supervised topic model for credit attribution inmulti-labeled corpora

u  MedLDA: maximum margin supervised topic models for regression andclassification

n  Clustering

n  Network data(social network) mining

u  Link-PLSA-LDA: A new unsupervised model for topics and influence ofblogs

u  Connections between the lines: augmenting social networks with text

u  Relational topic models for document networks

u  Topic and role discovery in social networks with experiments onenron and academic email

u  Group and topic discovery from relations and text

u  Probabilistic models for discovering e-communities

u  Arnetminer: Extraction and mining of academic social networks

u  Community evolution in dynamic multi-mode networks

u  An LDA-based community structure discovery approach for large-scalesocial networks

u  Probabilistic community discovery using hierarchical latent gaussianmixture model

u  Modeling Evolutionary Behaviors for Community-based DynamicRecommendation

u  Joint group and topic discovery from relations and text

u  Social topic models for community extraction

u  Combining link and content for community detection: a discriminativeapproach

u  Topic-Link LDA: Joint Models of Topic and Author Community

u  Modeling hidden topics on document manifold

u  Topic Modeling with Network Regularization

u  Mining Topic-Level Influence in Heterogeneous Networks

u  Utilizing Context in Generative Bayesian Models for Linked Corpus

u

n  Sentiment analysis and opinion mining

u  Rated aspect summarization of short comments.

u  Learning document-level semantic properties from free-textannotations.

u  Joint sentiment/topic model for sentiment analysis.

u  Mining multi-faceted overviews of arbitrary topics in a textcollection

u  Modeling online reviews with multi-grain topic models

u  Topic sentiment mixture: modeling facets and opinions in weblogs.

u  Multiple aspect ranking using the good grief algorithm.

u  A joint model of text and aspect ratings for sentiment summarization.

u  Opinion integration through semi-supervised topic modeling

u  Holistic Sentiment Analysis Across Languages: MultilingualSupervised Latent Dirichlet Allocation.

u  Latent Aspect Rating Analysis on Review Text Data: A RatingRegression Approach

u  Aspect and Sentiment Unification Model for Online Review Analysis

u  An unsupervised aspect-sentiment model for online reviews

u  Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid.

n  Evolutionary text stream mining

u  Discovering evolutionary theme patterns from text: an exploration oftemporal text mining

u  Topics over time: a non-markov continuous-time model of topicaltrends

u  Topic models over text streams: A study of batch and onlineunsupervised learning

u  Mining correlated bursty topic patterns from coordinated textstreams

u  Topic Evolution in a stream of Documents

u  Evolutionary Hierarchical Dirichlet Processes for MultipleCorrelated Time-varying Corpora

u  Studying the history of ideas using topic models

u  Mining common topics from multiple asynchronous text streams.

u  Mining Correlated Bursty Topic Patterns from Coordinated TextStreams

n  Temporal and spatial data analysis

u  A latent variable model for geographic lexical variation.

u  Dynamic topic models

u  A probabilistic approach to spatiotemporal theme pattern mining onweblogs

u  Continuous time dynamic topic models

u  Dynamic mixture models for multiple time series

u  On-Line LDA: Adaptive Topic Models for Mining Text Streams

u  Topic models over text streams: A study of batch and onlineunsupervised learning

u  Spatial latent dirichlet allocation

n  Scientific publication mining

u  Finding scientific topics.

u  The author-topic model for authors and documents.

u  Statistical entity-topic models

u  Probabilistic author-topic models for information discovery

u  The author-recipient-topic model for topic and role discovery insocial networks

u  Expertise modeling for matching papers with reviewers

u  Topic evolution and social interactions: how authors effect research

u  Joint latent topic models for text and citations

u  Co-ranking authors and documents in a heterogeneous network

u  Mixed-membership models of scientific publications

u  Modeling individual differences using Dirichlet processes

u  Multi-aspect expertise matching for review assignment

u  Topic-link LDA: joint models of topic and author community

u  Group and topic discovery from relations and their attributes

u  Exploiting Temporal Authors Interests via Temporal-Author-TopicModeling, ADMA 2009

u  Topic and Trend Detection in Text Collections Using Latent DirichletAllocation, ECIR 2009

u  Mining a digital library for influential authors.

u  Bibliometric Impact Measures Leveraging Topic Analysis.

u  Context-aware Citation Recommendation

u  Detecting Topic Evolution in Scientific Literature: How CanCitations Help?

u  Latent Interest-Topic Model: Finding the causal relationships behinddyadic data

u  A topic modeling approach and its integration into the random walkframework for academic search

n  Web data mining

u  Latent topic models for hypertext

n  Information retrieval

u  LDA-based document models for ad-hoc retrieval

u  Exploring social annotations for information retrieval

u  Modeling general and specific aspects of documents with a probabilistictopic model

u  Exploring topic-based language models for effective web informationretrieval

u  Probabilistic Models for Expert Finding

n  Information extraction

u  Employing Topic Models for Pattern-based Semantic Class Discovery

u  Combining Concept Hierarchies and Statistical Topic Models

u  A Probabilistic Approach for Adapting Information ExtractionWrappers and Discovering New Attributes

u  An Unsupervised Framework for Extracting and Normalizing ProductAttributes from Multiple Web Sites

u  Learning to Adapt Web Information Extraction Knowledge andDiscovering New Attributes via a Bayesian Approach

u  Adapting Web Information Extraction Knowledge via Mining SiteInvariant and Site Dependent Features

u  Learning to Extract and Summarize Hot Item Features from MultipleAuction Web Sites"

u  Semi-supervised Extraction of Entity Aspects Using Topic Models

n  Annotations(or Tagging, Labeling) and recommendation

u  Automatic labeling of multinomial topic models.

u  Context modeling for ranking and tagging bursty features in textstreams.

u  Learning document-level semantic properties from free-textannotations.

u  Generating summary keywords for emails using topics

u  Semantic Annotation of Frequent Patterns

u  Latent dirichlet allocation for tag recommendation

u  Tag-LDA for Scalable Real-time Tag Recommendation

u  The Topic-Perspective Model for Social Tagging Systems

u  A Probabilistic Topic-Connection Model for Automatic ImageAnnotation

u  Clustering the Tagged Web

n  Summarization

u  Topical keyphrase extraction from twitter.

u  Bayesian query-focused summarization

u  Topic-based multi-document summarization with probabilistic latentsemantic analysis

u  Multi-topic based Query-oriented Summarization

u  Multi-Document Summarization using Sentence-based Topic Models

u  Generating Impact-Based Summaries for Scientific Literature

u  Generating Comparative Summaries of Contradictory Opinions in Text

u  Rated Aspect Summarization of Short Comments

u  A Hybrid Hierarchical Model for Multi-Document Summarization

u  GENERATING TEMPLATES OF ENTITY SUMMARIES WITH AN ENTITY-ASPECT MODELAND PATTERN MINING

u  Latent dirichlet allocation and singular value decomposition basedmulti-document summarization

n  Social media mining

u  A latent variable model for geographic lexical variation.

u  Empirical study of topic modeling in twitter.

u  Characterizing micorblogs with topic models.

u  TwitterRank: finding topic-sensitive influential twitterers.

u  Comparing twitter and traditional media using topic models.

n  DB

u  Topic cube: Topic modeling for olap on multidimensional textdatabases

n  NLP tasks

u  A topic model for word sense disambiguation

u  Syntactic topic models

u  Integrating topics and syntax

u  Topic modeling: beyond bag-of-words

u  A Bayesian LDA-based model for semi-supervised part-of-speechtagging

u  Topical n-grams: Phrase and topic discovery, with an application toinformation retrieval

u  A topic model for word sense disambiguation

u  Named entity recognition in query

u  Multilingual topic models for unaligned text.

u  Markov topic models.

u  Modeling Syntactic Structures of Topics with a Nested HMM-LDA

u  Topic segmentation with an aspect hidden Markov model.

u  Polylingual Topic Models

u  A Latent Dirichlet Allocation method for Selectional Preferences

u  Improving word sense disambiguation using topic features

u  Cross-Lingual Latent Topic Extraction

u  Exploiting conversation structure in unsupervised topic segmentationfor emails

u  TOPIC MODELS FOR WORD SENSE DISAMBIGUATION AND TOKEN-BASED IDIOM

DETECTION

关于LDA的文章的更多相关文章

  1. LDA进阶(Dynamic Topic Models)

    转自:http://blog.csdn.net/hxxiaopei/article/details/8034308 http://blog.csdn.net/huagong_adu/article/d ...

  2. NLP︱LDA主题模型的应用难题、使用心得及从多元统计角度剖析

    将LDA跟多元统计分析结合起来看,那么LDA中的主题就像词主成分,其把主成分-样本之间的关系说清楚了.多元学的时候聚类分为Q型聚类.R型聚类以及主成分分析.R型聚类.主成分分析针对变量,Q型聚类针对样 ...

  3. LDA

    2 Latent Dirichlet Allocation Introduction LDA是给文本建模的一种方法,它属于生成模型.生成模型是指该模型可以随机生成可观测的数据,LDA可以随机生成一篇由 ...

  4. LDA主题模型三连击-入门/理论/代码

    目录 概况 为什么需要 LDA是什么 LDA的应用 gensim应用 数学原理 预备知识 抽取模型 样本生成 代码编写 本文将从三个方面介绍LDA主题模型--整体概况.数学推导.动手实现. 关于LDA ...

  5. 强大的矩阵奇异值分解(SVD)及其应用

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  6. 机器学习中的数学-矩阵奇异值分解(SVD)及其应用

    转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotE ...

  7. 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  8. SVD学习

    前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中, ...

  9. SVD分解技术详解

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

随机推荐

  1. QQ游戏--捕鱼假日竞技港对抗岛自动刷贝壳辅助使用教程和下载地址

    首先解压缩到D盘根目录 再进入buyujiari文件夹双击 然后打开QQ游戏,进入竞技港-->对抗岛,到达开始准备的界面 再打开  辅助.exe 360对按键精灵的一个文件会提示病毒,可不用理会 ...

  2. OC总结 【OC基础语法相关知识】

    m是OC源文件扩展名,入口点也是main函数,第一个OC程序: #import <Foundation/Foundation.h> int main(int argc, const cha ...

  3. ubuntu系统之难

    声明 笔者最近意外的发现 笔者的个人网站http://tiankonguse.com/ 的很多文章被其它网站转载,但是转载时未声明文章来源或参考自 http://tiankonguse.com/ 网站 ...

  4. Java Service Wrapper 发布Java程序或者jar包为Windows服务

    下载Windows版本:http://nchc.dl.sourceforge.net/sourceforge/wrapper/wrapper-windows-x86-32-3.2.3.zip 现在目前 ...

  5. k8s architecture

    总体架构 对应的源码结构: https://docker-k8s-lab.readthedocs.io/en/latest/kubernetes/stepbystep.html

  6. [转]oracle update set select from 关联更新

    本文转自:http://blog.csdn.net/disiwei1012/article/details/52589181 http://www.blogjava.net/Jhonney/archi ...

  7. 三、thymeleaf的使用

    1.简介 thymleaf是一个基于html的页面模板,springboot极力推荐使用它,代替jsp. API地址:https://www.thymeleaf.org/doc/tutorials/3 ...

  8. go install runtime/cgo: open /usr/local/go/pkg/darwin_amd64/runtime/cgo.a: permission denied

    在做更新时,收到下面提示: go get  github.com/astaxie/beego go install runtime/cgo: open /usr/local/go/pkg/darwin ...

  9. centos自带python2.6升级到python2.7。并解决yum pip easy_install pip等模块兼容性问题

    参考原文:  https://www.cnblogs.com/kimyeee/p/7250560.html   https://www.cnblogs.com/galaxy-gao/p/5796488 ...

  10. javascript闭包中循环问题

    如下的html,为什么每次输出都是5,而不是点击每个p,就alert出对应的1,2,3,4,5. <html > <head> <meta http-equiv=&quo ...