Description

Farmer John is constructing a new milking machine and wishes to keep it secret as long as possible. He has hidden in it deep within his farm and needs to be able to get to the machine without being detected. He must make a total of T (1 <= T <= 200) trips to the machine during its construction. He has a secret tunnel that he uses only for the return trips.

The farm comprises N (2 <= N <= 200) landmarks (numbered 1..N) connected by P (1 <= P <= 40,000) bidirectional trails (numbered 1..P) and with a positive length that does not exceed 1,000,000. Multiple trails might join a pair of landmarks.

To minimize his chances of detection, FJ knows he cannot use any trail on the farm more than once and that he should try to use the shortest trails.

Help FJ get from the barn (landmark 1) to the secret milking machine (landmark N) a total of T times. Find the minimum possible length of the longest single trail that he will have to use, subject to the constraint that he use no trail more than once. (Note well: The goal is to minimize the length of the longest trail, not the sum of the trail lengths.)

It is guaranteed that FJ can make all T trips without reusing a trail.

Input

* Line 1: Three space-separated integers: N, P, and T

* Lines 2..P+1: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, indicating that a trail connects landmark A_i to landmark B_i with length L_i.

Output

* Line 1: A single integer that is the minimum possible length of the longest segment of Farmer John's route.
 
题意:要求从1到N找到T条路径,路径上的边不能重复,要求最大的边最小,问那条边是多少
思路:二分答案。每次二分一个长度,然后求最大流看能不能走出T条边。至于建图,每两条可直达的边之间建一条双向边,容量为1,最大流就是能走出的路径数。
PS:搞个有容量上限的最大流,直接清空流就不用每次都建图了。据说DINIC在单位流量的图复杂度为O(ElogV)。
 
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; const int MAXN = 210;
const int MAXE = 40010 * 2;
const int INF = 0x7f7f7f7f; struct Dinic {
int n, m, st, ed, ecnt, maxlen;
int head[MAXN];
int cur[MAXN], d[MAXN];
int to[MAXE], next[MAXE], flow[MAXE], cap[MAXE], len[MAXE]; void init(int ss, int tt) {
st = ss; ed = tt;
ecnt = 2;
memset(head, 0, sizeof(head));
} void add_edge(int u, int v, int c, int l) {
len[ecnt] = l; to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = 0; next[ecnt] = head[u]; head[u] = ecnt++;
len[ecnt] = l; to[ecnt] = u; cap[ecnt] = c; flow[ecnt] = 0; next[ecnt] = head[v]; head[v] = ecnt++;
} bool bfs() {
memset(d, 0, sizeof(d));
queue<int> que; que.push(st);
d[st] = 1;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int p = head[u]; p; p = next[p]) {
if(len[p] > maxlen) continue;
int v = to[p];
if(!d[v] && cap[p] > flow[p]) {
d[v] = d[u] + 1;
que.push(v);
if(v == ed) return true;
}
}
}
return d[ed];
} int dfs(int u, int a) {
if(u == ed || a == 0) return a;
int outflow = 0, f;
for(int &p = cur[u]; p; p = next[p]) {
if(len[p] > maxlen) continue;
int v = to[p];
if(d[u] + 1 == d[v] && (f = dfs(v, min(a, cap[p] - flow[p]))) > 0) {
flow[p] += f;
flow[p ^ 1] -= f;
outflow += f;
a -= f;
if(a == 0) break;
}
}
return outflow;
} int Maxflow(int mlen) {
int ans = 0; maxlen = mlen;
while(bfs()) {
for(int i = 0; i <= ed; ++i) cur[i] = head[i];
ans += dfs(st, INF);
}
return ans;
}
} G; int main() {
int n, m, T, left = 0, right = 0;
scanf("%d%d%d", &n, &m, &T);
G.init(1, n);
for(int i = 0; i < m; ++i) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
G.add_edge(a, b, 1, c);
if(right < c) right = c;
}
while(left < right) {
memset(G.flow, 0, sizeof(G.flow));
int mid = (left + right) >> 1;
if(G.Maxflow(mid) < T) left = mid + 1;
else right = mid;
}
printf("%d\n", right);
}

  

 

POJ 2455 Secret Milking Machine(最大流+二分)的更多相关文章

  1. POJ 2455 Secret Milking Machine(搜索-二分,网络流-最大流)

    Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9658   Accepted: ...

  2. POJ 2455 Secret Milking Machine (二分 + 最大流)

    题目大意: 给出一张无向图,找出T条从1..N的路径,互不重复,求走过的所有边中的最大值最小是多少. 算法讨论: 首先最大值最小就提醒我们用二分,每次二分一个最大值,然后重新构图,把那些边权符合要求的 ...

  3. poj 2455 Secret Milking Machine 二分+最大流 sap

    题目:p条路,连接n个节点,现在需要从节点1到节点n,不重复走过一条路且走t次,最小化这t次中连接两个节点最长的那条路的值. 分析:二分答案,对于<=二分的值的边建边,跑一次最大流即可. #in ...

  4. POJ 2455 Secret Milking Machine 【二分】+【最大流】

    <题目链接> 题目大意: FJ有N块地,这些地之间有P条双向路,每条路的都有固定的长度l.现在要你找出从第1块地到第n块地的T条不同路径,每条路径上的路段不能与先前的路径重复,问这些路径中 ...

  5. POJ 2455 Secret Milking Machine (二分+无向图最大流)

    [题意]n个点的一个无向图,在保证存在T条从1到n的不重复路径(任意一条边都不能重复)的前提下,要使得这t条路上经过的最长路径最短. 之所以把"经过的最长路径最短"划个重点是因为前 ...

  6. POJ 2455 - Secret Milking Machine

    原题地址:http://poj.org/problem?id=2455 题目大意:给出一个N个点的无向图,中间有P条边,要求找出从1到n的T条通路,满足它们之间没有公共边,并使得这些通路中经过的最长的 ...

  7. POJ Secret Milking Machine 【网络流+二分】

    题意:各一个地图,两点之间有若干条路,要在节点1和节点n之间行走t次(就是问1到n的路径数至少为t,每一条路径不能有重复),问所有路径里面最长的部分(这个题目特别强调,不是路径长度和,是路径中相邻两点 ...

  8. 【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流

    题目描述 Farmer John is constructing a new milking machine and wishes to keep it secret as long as possi ...

  9. BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 网络流 + 二分答案

    Description Farmer John is constructing a new milking machine and wishes to keep it secret as long a ...

随机推荐

  1. React-Reflux 基础分享

    因工作需要使用 React + Reflux 开发,最近几天都在努力学习着,特别是 Reflux,在网上查找的许多资料和 github 上的文档年代都有点久远,JavaScript 按照目前的节奏,更 ...

  2. centOS上的基础文件操作

    文件及文件夹的基础操作: 1: 新建     (1)在当前目录新建一个文件夹   dir foldername     (2)  新建文件:     当前目录  vi newFile.text     ...

  3. 转:AbstractQueuedSynchronizer的介绍和原理分析

    引自:http://ifeve.com/introduce-abstractqueuedsynchronizer/ 简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同 ...

  4. JavaScript 中 this 的原理

    一.问题 学习 JavaScript 其中一个标志就是理解下面两种写法,会输出有不一样的结果. var obj = { foo: function () {} }; var foo = obj.foo ...

  5. HTML中汉字空格占位符

    == 普通的英文半角空格   ==   ==   == no-break space (普通的英文半角空格但不换行)   == 中文全角空格 (一个中文宽度)   ==   == en空格 (半个中文 ...

  6. js新开窗口避免浏览器拦截解决方案

    Ajax回调函数中,打开新窗口解决方案 var w = window.open(); $.post("GetHomToTestPaper", {homeworkName:homew ...

  7. JS this总结

    JS中一切皆对象,this关键字出现在对象定义时的成员(属性和方法)里,因此this指向的是一个JS对象,这个JS对象具体是哪一个的确定是在运行时确定的. 非严格模式: 1.作为对象成员:对象调用对象 ...

  8. js 中~~是什么意思?

    其实是一种利用符号进行的类型转换,转换成数字类型 ~~true == 1~~false == 0~~"" == 0~~[] == 0 ~~undefined ==0~~!undef ...

  9. hadoop生态搭建(3节点)-11.storm配置

    # http://archive.apache.org/dist/storm/apache-storm-1.1.0/ # ======================================= ...

  10. django创建第一个视图-4

    创建视图 打开 demo 应用下的 views.py 文件,添加代码 from django.http import HttpResponse from django.shortcuts import ...