HDU4388-Stone Game II-Nim变形
http://acm.hdu.edu.cn/showproblem.php?pid=4388
Nim变形,对一个\(n\)个石子的堆,每次取\(k(0<k<n)\)个(注意不能全取光),同时要保证\(n\oplus k<n\),并添加一堆新的大小为\(n\oplus k\)的石子。
同时每个人在整个游戏中还有一次机会把添加的大小为\(n\oplus k\)的石子改为\(n\oplus (2k)\)个石子,同样是不能操作的输,两个人采取最优策略。
初步想法
一般性地,我们还是先不管\(n\oplus k\)变成\(n\oplus(2k)\)这个操作,先想清楚没有这种操作的情况
很自然地去手算几个小数据,以及往二进制的方向想(毕竟异或都出来了),\(n=1,2\)都直接不能操作,\(n=3=(11)_2\)的时候可以取一个\(k=1\)或者\(k=2\),接下来\(k=4=(100)_2\)又不能操作了…
仔细想想就会发现对于一个\(2^k=(\underbrace{100\dots00}_{k个0})_2\)不管怎么取一个比\(n\)小的\(k\),异或之后一定比\(n\)大,所以对于一堆的\(2^k\)就是一个不能操作的状态。同样如果是\((100\dots 010\dots 00)_2\)这样的东西,只要取一个\(k=(100\dots000\dots00),n\oplus k=(000\dots010\dots00)_2\)一定是满足条件的。
(也就是从\(n\)的1里面选一些1出来当\(k\),剩下\(n\oplus k\)一定是小于\(n\)的)
于是有了初步的想法,二进制表示下\(m\)个1的\(n\)至少可以按照这种拆法拆\(m-1\)次
进一步如果这么拆,当\(m\)是奇数时先手必败,否则必胜
进一步
不过仔细想想好像也不一定要那么拆,比如:
\]
5位→2位+5位,4次→1次+4次=5次,嗯?乍一看好像上面那样优雅的结论被破坏掉了…(当时推到这里差点放弃前面的思路…)冷静想一想,一次操作改变奇偶性…这不还是很河里嘛…(先手奇→留给后手偶)
而且虽然1的个数变多了,但是其实在两个人都采取最优策略的情况下具有必胜策略的那个人其实每次单独拿一个\(2^k\)出来就总是能把1的个数降下来…所以终究是能把游戏结束掉
证明一下?
似乎不管怎么拆,每次拆完都会改变奇偶性。怎么证呢…
- 考虑某一位\(p\),如果\(n\)的这一位为1,\(p\)的为0,那么\(n\oplus k\)的结果是1
- 类似地,列出四种情况,奇偶性一定不变
为什么呢…好像很显然…因为异或本来就是模二意义下的加法…奇偶性当然不变了…
证明了个寂寞
于是有结论:\(n\)中1的个数和\(k\)与\(n\oplus k\)中1的个数之和的奇偶性相同
好像快做完了
这么看来好像\(n\oplus k\to n\oplus (2k)\)就是纯粹拿来唬人的呀…毕竟奇偶性还是不变(因为\(k\)和\(2k\)中的1的个数是一样的,再套用上面的结论)
于是就愉快地做完了
根据初始状态算出来“能进行操作的次数”,判一下奇偶性
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
const int N=1e5+5;
int f[N];
inline int calc(int x)
{
if(f[x])return f[x];
int r=0;
while(x){if(x&1)r++;x>>=1;}
return f[x]=r;
}
int main()
{
int T;scanf("%d",&T);
rep(tc,1,T)
{
int n,r=0;
scanf("%d",&n);
rep(i,1,n)
{
int a;scanf("%d",&a);
r+=calc(a)-1;
}
printf("Case %d: ",tc);
if(r&1)printf("Yes\n");
else printf("No\n");
}
}
HDU4388-Stone Game II-Nim变形的更多相关文章
- [hdu4388]Stone Game II
不管是否使用技能,发现操作前后所有堆二进制中1的个数之和不变.那么对于一个堆其实可以等价转换为一个k个石子的堆(k为该数二进制的个数),然后就是个nim游戏. 1 #include<bits/s ...
- HDU4388:Stone Game II(博弈+思维)
Stone Game II Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- HDU 3094 树上删边 NIM变形
基本的树上删边游戏 写过很多遍了 /** @Date : 2017-10-13 18:19:37 * @FileName: HDU 3094 树上删边 NIM变形.cpp * @Platform: W ...
- hdu 4388 Stone Game II sg函数 博弈
Stone Game II comes. It needs two players to play this game. There are some piles of stones on the d ...
- hdu 4388 Stone Game II
Stone Game II HDU - 4388 题目大意: 给出n堆物品,每堆物品都有若干件,现在A和B进行游戏,每人每轮操作一次,按照如下规则: 1. 任意选择一个堆,假设该堆有x个物品,从中选择 ...
- HDU 4388 Stone Game II {博弈||找规律}
Stone Game II Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- Leetcode--Last Stone Weight II
Last Stone Weight II 欢迎关注H寻梦人公众号 You are given an array of integers stones where stones[i] is the we ...
- ZOJ 3964 NIM变形
LINK 题意:n堆石子,Alice 和 Bob 轮流取石子,谁不能再取或被对方取完为败.但是对于alice拥有限制:b=0此堆正常无限制:b=1此堆Alice只能取奇数个石子:b=2只能取偶数个石子 ...
- LeetCode 1049. Last Stone Weight II
原题链接在这里:https://leetcode.com/problems/last-stone-weight-ii/ 题目: We have a collection of rocks, each ...
- LeetCode 1140. Stone Game II
原题链接在这里:https://leetcode.com/problems/stone-game-ii/ 题目: Alex and Lee continue their games with pile ...
随机推荐
- Spring-Boot项目中配置redis注解缓存
Spring-Boot项目中配置redis注解缓存 在pom中添加redis缓存支持依赖 <dependency> <groupId>org.springframework.b ...
- vue中实时监听移动端屏幕高度(采坑后实践)
最近做微信公众号活动,需要首页往input中输入内容,点击input软键盘tabbar被顶起来,网上借鉴很多(踩了许多坑)最后自己实践出来. <--!将手机屏幕的默认高度和实时高度获取--> ...
- 为什么要选择ABBYY FineReader 14?
FineReader 是一款一体化的 OCR 和PDF编辑转换器,用于在处理文档时提高业务生产力.以人工智能为基础的 FineReader 14 提供强大且易用的工具来帮助您获得纸质文档和 PDF 中 ...
- 如何用FL Studio将乐器组合与分层
有过音乐制作经历的小伙伴应该知道,我们在用以FL Studio20为代表的音乐编曲软件制作音乐时,往往需要在同一节奏点添加多种音效,这样可以使音乐听起来更具层次感.正因如此,我们就需要不断添加音符,就 ...
- 循序渐进VUE+Element 前端应用开发(29)--- 高级查询条件的界面设计
在系统模块中的业务列表展示里面,一般我们都会在列表中放置一些查询条件,如果是表字段不多,大多数情况下,放置的条件有十个八个就可以了,如果是字段很多,而这些条件信息也很关键的时候,就可能放置很多条件,但 ...
- Hadoop优化之数据压缩
bBHadoop数据压缩 概述 运行hadoop程序时,I/O操作.网络数据传输.shuffle和merge要花大量的时间,尤其是数据规模很大和工作负载密集的情况下,这个时候,使用数据压缩可以提高效率 ...
- Mybatis【2.2】-- Mybatis关于创建SqlSession源码分析的几点疑问?
代码直接放在Github仓库[https://github.com/Damaer/Mybatis-Learning ],可直接运行,就不占篇幅了. 目录 1.为什么我们使用SQLSessionFact ...
- mq内存映射
MappedFileQueue的封装 MappedFileQueue是MappedFile的管理容器,MappedFileQueue是对存储目录的封装. 查找MappedFile: 1.根据时间戳来查 ...
- 磁盘冗余阵列之RAID5、RAID10
RAID技术主要有以下三个基本功能: (1).通过对磁盘上的数据进行条带化,实现对数据成块存取,减少磁盘的机械寻道时间,提高了数据存取速度. (2).通过对一个阵列中的几块磁盘同时读取,减少了磁盘的机 ...
- C#中的WinForm问题——如何设置窗体的大小为超过屏幕显示的最大尺寸?
今天在学习C#时遇到了一个问题,在此记录下来,留作日后总结复习之用,也分享给有同样问题和困扰的园友. 我手上的电脑是笔记本电脑,屏幕的尺寸大小为1366*768,然而项目所使用的屏幕大小为1920*1 ...