原文链接:https://blog.csdn.net/yepeng_xinxian/article/details/82380707

1.卷积层的输出计算公式
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
参数:

in_channels(int) – 输入信号的通道
out_channels(int) – 卷积产生的通道
kerner_size(int or tuple) - 卷积核的尺寸
stride(int or tuple, optional) - 卷积步长
padding (int or tuple, optional)- 输入的每一条边补充0的层数
dilation(int or tuple, `optional``) – 卷积核元素之间的间距
groups(int, optional) – 从输入通道到输出通道的阻塞连接数
bias(bool, optional) - 如果bias=True,添加偏置
形状:
输入: (N,C_in,H_in,W_in)
输出: (N,C_out,H_out,W_out)

我们可以得到:
H_out = floor( (H_in+2padding[0]-dilation[0](kernerl_size[0]-1)-1)/stride[0]+1 )

W_out=floor( (W_in+2padding[1]-dilation[1](kernerl_size[1]-1)-1)/stride[1]+1 )

一般情况下,由于dilation默认为1,上式可以简化为:

H_out=floor( (H_in+2padding[0]-kernerl_size[0])/stride[0]+1 )

W_out=floor( (W_in+2padding[1]-kernerl_size[1])/stride[1]+1 )

 

2.反卷积层(ConvTranspose2D)的输出计算公式
class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True)
参数:

in_channels(int) – 输入信号的通道数
out_channels(int) – 卷积产生的通道数
kerner_size(int or tuple) - 卷积核的大小
stride(int or tuple,optional) - 卷积步长
padding(int or tuple, optional) - 输入的每一条边补充0的层数
output_padding(int or tuple, optional) - 输出的每一条边补充0的层数
dilation(int or tuple, optional) – 卷积核元素之间的间距
groups(int, optional) – 从输入通道到输出通道的阻塞连接数
bias(bool, optional) - 如果bias=True,添加偏置
形状:
输入: (N,C_in,H_in,W_in)
输出: (N,C_out,H_out,W_out)

我们可以得到:
H_out=(H_in-1)stride[0]-2padding[0]+kernel_size[0]+output_padding[0]

W_out=(W_in-1)stride[1]-2padding[1]+kernel_size[1]+output_padding[1]

由于output_padding默认为0,上式可以简化为:

H_out=(H_in-1)stride[0]-2padding[0]+kernel_size[0]

W_out=(W_in-1)stride[1]-2padding[1]+kernel_size[1]

Tips:相当于Conv2d中计算公式的反函数

 

3.pooling层的输出计算公式
class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
参数:

kernel_size(int or tuple) - max pooling的窗口大小
stride(int or tuple, optional) - max pooling的窗口移动的步长。默认值是kernel_size
padding(int or tuple, optional) - 输入的每一条边补充0的层数
dilation(int or tuple, optional) – 一个控制窗口中元素步幅的参数
return_indices - 如果等于True,会返回输出最大值的序号,对于上采样操作会有帮助
ceil_mode - 如果等于True,计算输出信号大小的时候,会使用向上取整,代替默认的向下取整的操作
形状:
输入: (N,C,H_in,W_in)
输出: (N,C,H_out,W_out)

我们可以得到:
H_out = floor( (H_in+2padding[0]-dilation[0](kernerl_size[0]-1)-1)/stride[0]+1 )

W_out=floor( (W_in+2padding[1]-dilation[1](kernerl_size[1]-1)-1)/stride[1]+1 )

一般情况下,由于dilation默认为1,上式可以简化为:

H_out=floor( (H_in+2padding[0]-kernerl_size[0])/stride[0]+1 )

W_out=floor( (W_in+2padding[1]-kernerl_size[1])/stride[1]+1 )

深度学习中卷积层和pooling层的输出计算公式(转)的更多相关文章

  1. 卷积在深度学习中的作用(转自http://timdettmers.com/2015/03/26/convolution-deep-learning/)

    卷积可能是现在深入学习中最重要的概念.卷积网络和卷积网络将深度学习推向了几乎所有机器学习任务的最前沿.但是,卷积如此强大呢?它是如何工作的?在这篇博客文章中,我将解释卷积并将其与其他概念联系起来,以帮 ...

  2. 深度学习-conv卷积

    过滤器(卷积核) 传统的图像过滤器算子有以下几种: blur kernel:减少相邻像素的差异,使图像变平滑. sobel:显示相邻元素在特定方向上的差异. sharpen :强化相邻像素的差异,使图 ...

  3. 深度学习:卷积神经网络(convolution neural network)

    (一)卷积神经网络 卷积神经网络最早是由Lecun在1998年提出的. 卷积神经网络通畅使用的三个基本概念为: 1.局部视觉域: 2.权值共享: 3.池化操作. 在卷积神经网络中,局部接受域表明输入图 ...

  4. AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层)

    类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长.比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支 ...

  5. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  6. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  7. 【神经网络与深度学习】卷积神经网络-进化史:从LeNet到AlexNet

    [卷积神经网络-进化史]从LeNet到AlexNet 本博客是[卷积神经网络-进化史]的第一部分<从LeNet到AlexNet> 如需转载,请附上本文链接:http://blog.csdn ...

  8. 深度学习中的Data Augmentation方法(转)基于keras

    在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...

  9. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

随机推荐

  1. Spring的三大核心接口——BeanFactory、ApplicationContext、WebApplicationContext

    之前也在用这三个接口,但是对于他们的概念还是处于朦胧状态,同时,也不知道他们之间是一个什么关系,趁着现在有点时间总结一下吧,也需要对你有所帮助.一.BeanFactory       基本认识:    ...

  2. 几个超级实用但很少人知道的 VS 技巧[更新]

    大家好,今天分享一些实用的 VS 技巧,而这些技巧我发现很多人都不知道.因为我经常在工作中遇到:我在同事电脑上解决问题,或在会议上演示代码示例时,使用了一些 VS "骚"操作,他们 ...

  3. spring+springmvc+mybatis+shiro

    创建maven框架https://blog.csdn.net/Ajax_mt/article/details/78549119 具体下边 https://blog.csdn.net/w2222288/ ...

  4. Python-装饰器(语法糖)上下五千年和前世今生

    装饰器上下五千年和前世今生,这里我们始终要问,装饰器为何产生?装饰器产生解决了什么问题?什么样的需求推动了装饰器的产生?思考问题的时候,始终要问,为什么要这样,而不是那样或者其他样.这里我不先说,也不 ...

  5. 小伙伴想学Jenkins自动构建发布项目,我:安排上了!!

    写在前面 趁着十一长假,很多小伙伴都在悄悄学习,有些是为了能够顺利通过面试,进入大厂升职加薪.有些则是为了进一步巩固和提高自己的专业技能,希望有朝一日能过成为互联网架构师乃至技术专家.这不,就有小伙伴 ...

  6. 代码格式化工具:clang-format

    IDE: Visual Studio Code Language: C/C++ 格式化工具: clang-format 安装 vscode安装扩展C/C++,扩展程序将自动安装clang-format ...

  7. 实验一 HTML基本标签及文本处理

    实验一 HTML基本标签及文本处理 [实验目的] 1.掌握利用因特网进行信息游览.搜索,下载网页.图片.文字和文件: 2.对给定的网站,能指出网站的链接结构.目录结构.页面布局方式: 3.掌握HTML ...

  8. 多测师讲解接口测试 _linux中搭建环境cms_高级讲师肖sir

    cms后台的搭建, 我们主要是用来做接口测试和接口自动化测试: 我们搭建的流程和之前搭建多有米一样: 后期给我们一个war包就要知道搭建一个文档: 要知道环境项目怎么讲?   讲解下搭建cms环境的流 ...

  9. 多测师讲解第一个月 _综合面试题_高级讲师肖sir

    第一个月综合面试题 1.  冒烟测试是什么意思?  对主要的用例测试 2.你们公司的项目流程是什么? 3.你们公司的bug分几个级别?  4个 4.你对外键是怎么理解的? 你会使用外键吗?给一个表添加 ...

  10. python程序整理(2)

    # 写一个函数完成三次登陆功能: # 用户的用户名密码从一个文件register中取出. # register文件包含多个用户名,密码,用户名密码通过|隔开,每个人的用户名密码占用文件中一行. # 完 ...