LRU cache

LRU(最近最少使用)是一种常用的缓存淘汰机制。当缓存大小容量到达最大分配容量的时候,就会将缓存中最近访问最少的对象删除掉,以腾出空间给新来的数据。

实现

(1)单线程简单版本

( 来源:力扣(LeetCode)链接:leetcode题目)

  题目: 设计和构建一个“最近最少使用”缓存,该缓存会删除最近最少使用的项目。缓存应该从键映射到值(允许你插入和检索特定键对应的值),并在初始化时指定最大容量。当缓存被填满时,它应该删除最近最少使用的项目。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
       写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。

  思路:LinkedList + HashMap: LinkedList用来保存key的访问情况,最近访问的key将会放置到链表的最尾端,如果链表大小超过容量,移除链表的第一个节点,同时移除该key在hashmap中对应的键值对。程序如下:

class LRUCache {
private HashMap<Integer, Integer> hashMap = null;
private LinkedList<Integer> list = null;
private int capacity;
public LRUCache(int capacity) {
hashMap = new HashMap<>(capacity);
list = new LinkedList<Integer>();
this.capacity = capacity;
} public int get(int key) {
if(hashMap.containsKey(key)){
list.remove((Object)key);
list.addLast(key);
return hashMap.get(key);
}
return -1;
} public void put(int key, int value) {
if(list.contains((Integer)key)){
list.remove((Integer)key);
list.addLast((Integer)key);
hashMap.put(key, value);
return;
}
if(list.size() == capacity){
Integer v = list.get(0);
list.remove(0);
hashMap.remove((Object)v);
}
list.addLast(key);
hashMap.put(key, value);
}
}

(2)多线程并发版LRU Cache

 与单线程思路类似,将HashMap和LinkedList换成支持线程安全的容器ConcurrentHashMap和ConcurrentLinkedQueue结构。ConcurrentLinkedQueue是一个基于链表,支持先进先出的的队列结构,处理方法同单线程类似,只不过为了保证多线程下的安全问题,我们会使用支持读写分离锁的ReadWiterLock来保证线程安全。它可以实现:

  1.同一时刻,多个线程同时读取共享资源。

  2.同一时刻,只允许单个线程进行写操作。

/*
* 泛型中通配符
* ? 表示不确定的 java 类型
* T (type) 表示具体的一个java类型
* K V (key value) 分别代表java键值中的Key Value
* E (element) 代表Element
*/
public class MyLRUCache<K, V> {
private final int capacity;
private ConcurrentHashMap<K, V> cacheMap;
private ConcurrentLinkedQueue<K> keys;
ReadWriteLock RWLock = new ReentrantReadWriteLock();
/*
* 读写锁
*/
private Lock readLock = RWLock.readLock();
private Lock writeLock = RWLock.writeLock(); private ScheduledExecutorService scheduledExecutorService; public MyLRUCache(int capacity) {
this.capacity = capacity;
cacheMap = new ConcurrentHashMap<>(capacity);
keys = new ConcurrentLinkedQueue<>();
scheduledExecutorService = Executors.newScheduledThreadPool(10);
} public boolean put(K key, V value, long expireTime){
writeLock.lock();
try {
//需要注意containsKey和contains方法方法的区别
if(cacheMap.containsKey(key)){
keys.remove(key);
keys.add(key);
cacheMap.put(key, value);
return true;
}
if(cacheMap.size() == capacity){
K tmp = keys.poll();
if( key != null){
cacheMap.remove(tmp);
}
}
cacheMap.put(key, value);
keys.add(key);
if(expireTime > 0){
removeAfterExpireTime(key, expireTime);
}
return true;
}finally {
writeLock.unlock();
}
} public V get(K key){
readLock.lock();
try {
if(cacheMap.containsKey(key)){
keys.remove(key);
keys.add(key);
return cacheMap.get(key);
}
return null;
}finally {
readLock.unlock();
}
} public boolean remove(K key){
writeLock.lock();
try {
if(cacheMap.containsKey(key)){
cacheMap.remove(key);
keys.remove(key);
return true;
}
return false;
}finally {
writeLock.unlock();
}
} private void removeAfterExpireTime(K key, long expireTime){
scheduledExecutorService.schedule(new Runnable() {
@Override
public void run() {
cacheMap.remove(key);
keys.remove(key);
}
}, expireTime, TimeUnit.MILLISECONDS);
}
public int size(){
return cacheMap.size();
}
}

  在代码中添加了设置键值对失效的put方法,通过使用一个定时器线程池保证过期键值对的及时清理。测试代码如下:

public class LRUTest {
public static void main(String[] args) throws InterruptedException {
/*
MyLRUCache<String, Integer> myLruCache = new MyLRUCache(100000);
ExecutorService es = Executors.newFixedThreadPool(10);
AtomicInteger atomicInteger = new AtomicInteger(1);
CountDownLatch latch = new CountDownLatch(10);
long starttime = System.currentTimeMillis();
for (int i = 0; i < 10; i++) {
es.submit(new Runnable() {
@Override
public void run() {
for (int j = 0; j < 100000; j++) {
int v = atomicInteger.getAndIncrement();
myLruCache.put(Thread.currentThread().getName() + "_" + v, v, 200000);
}
latch.countDown();
}
});
} latch.await();
long endtime = System.currentTimeMillis();
es.shutdown();
System.out.println("Cache size:" + myLruCache.size()); //Cache size:1000000
System.out.println("Time cost: " + (endtime - starttime));
*/
MyLRUCache<Integer, String> myLruCache = new MyLRUCache<>( 10);
myLruCache.put(1, "Java", 1000);
myLruCache.put(2, "C++", 2000);
myLruCache.put(3, "Java", 3000);
System.out.println(myLruCache.size());//3
Thread.sleep(2200);
System.out.println(myLruCache.size());//1
}
}

  

LRU cache缓存简单实现的更多相关文章

  1. LeetCode题解: LRU Cache 缓存设计

    LeetCode题解: LRU Cache 缓存设计 2014年12月10日 08:54:16 邴越 阅读数 1101更多 分类专栏: LeetCode   版权声明:本文为博主原创文章,遵循CC 4 ...

  2. LRU Cache的简单c++实现

    什么是 LRU LRU Cache是一个Cache的置换算法,含义是“最近最少使用”,把满足“最近最少使用”的数据从Cache中剔除出去,并且保证Cache中第一个数据是最近刚刚访问的,因为这样的数据 ...

  3. [LintCode] LRU Cache 缓存器

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  4. 基于LRU Cache的简单缓存

    package com.test.testCache; import java.util.Map; import org.json.JSONArray; import org.json.JSONExc ...

  5. Go LRU Cache 抛砖引玉

    目录 1. LRU Cache 2. container/list.go 2.1 list 数据结构 2.2 list 使用例子 3. transport.go connLRU 4. 结尾 正文 1. ...

  6. LRU Cache & Bloom Filter

    Cache 缓存 1. 记忆 2. 空间有限 3. 钱包 - 储物柜 4. 类似背代码模板,O(n) 变 O(1)     LRU Cache 缓存替换算法 1. Least Recently Use ...

  7. [LeetCode] LRU Cache 最近最少使用页面置换缓存器

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  8. LeetCode之LRU Cache 最近最少使用算法 缓存设计

    设计并实现最近最久未使用(Least Recently Used)缓存. 题目描述: Design and implement a data structure for Least Recently ...

  9. [LeetCode] 146. LRU Cache 最近最少使用页面置换缓存器

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

随机推荐

  1. 如何在Linux下使用Tomcat部署Web应用(图文)

    学习Java必不可少的视同Tomcat,但是如果不会使用tomcat部署项目,那也是白扯,在这里教大家如果在Linux系统下视同Tomcat部署Web应用.   工具/原料   Apache-tomc ...

  2. 队列的顺序存储与链式存储c语言实现

    一. 队列 1.队列定义:只允许在表的一端进行插入,表的另一端进行删除操作的线性表. 2.循环队列:把存储队列的顺序队列在逻辑上视为一个环. 循环队列状态: 初始时:Q.front=Q.rear=0 ...

  3. Spring Security(二) —— Guides

    摘要: 原创出处 https://www.cnkirito.moe/spring-security-2/ 「老徐」欢迎转载,保留摘要,谢谢! 2 Spring Security Guides 上一篇文 ...

  4. 使用Tensorflow对模型进行量化

    本文旨在将迁移学习训练好的模型基于tensorflow工具进行量化. 环境配置及迁移学习部分可参考博文[https://www.cnblogs.com/hayley111/p/12887853.htm ...

  5. Apache Hudi重磅特性解读之全局索引

    1. 摘要 Hudi表允许多种类型操作,包括非常常用的upsert,当然为支持upsert,Hudi依赖索引机制来定位记录在哪些文件中. 当前,Hudi支持分区和非分区的数据集.分区数据集是将一组文件 ...

  6. DLL隐式链接

    动态链接库有2种连接方式,一种是通过库直接加入(又叫隐式加载或载入时加载),一种是在运行时加入.后者很好理解,比如LoadLibrary(),GetProcAddress()获取想要引入的函数,使用完 ...

  7. 推荐一款Python开源库,技术人必备的造数据神器!

    1. 背景 在软件需求.开发.测试过程中,有时候需要使用一些测试数据,针对这种情况,我们一般要么使用已有的系统数据,要么需要手动制造一些数据.由于现在的业务系统数据多种多样,千变万化.在手动制造数据的 ...

  8. mysqladmin 的用法及所带参数

  9. Python并发编程01 /操作系统发展史、多进程理论

    Python并发编程01 /操作系统发展史.多进程理论 目录 Python并发编程01 /操作系统发展史.多进程理论 1. 操作系统 2. 进程理论 1. 操作系统 定义:管理控制协调计算机中硬件与软 ...

  10. Ethical Hacking - NETWORK PENETRATION TESTING(7)

    Gaining Access to encrypted networks Three main encryption types: 1. WEP 2.WPA 3.WPA2 WEP Cracking W ...