前文传送门:

「Python 图像处理 OpenCV (1):入门」

「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」

「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理」

「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」

「Python 图像处理 OpenCV (5):图像的几何变换」

「Python 图像处理 OpenCV (6):图像的阈值处理」

「Python 图像处理 OpenCV (7):图像平滑(滤波)处理」

「Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀」

「Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算」

「Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算」

「Python 图像处理 OpenCV (11):Canny 算子边缘检测技术」

「Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术」

Scharr 算子

在说 Scharr 算子之前,必须要提的是前面我们介绍过的 Sobel 算子, Sobel 算子虽然可以有效的提取图像边缘,但是对图像中较弱的边缘提取效果较差。

这是由于 Sobel 算子在计算相对较小的核的时候,其近似计算导数的精度比较低,例如一个 3 * 3 的 Sobel 算子,在梯度角度接近水平或垂直方向时,其不精确性就非常明显。

因此引入 Scharr 算子。 Scharr 算子是对 Sobel 算子差异性的增强,两者之间的在检测图像边缘的原理和使用方式上相同。

而 Scharr 算子的主要思路是通过将模版中的权重系数放大来增大像素值间的差异。

Scharr 算子又称为 Scharr 滤波器,也是计算 x 或 y 方向上的图像差分,在 OpenCV 中主要是配合 Sobel 算子的运算而存在的,其滤波器的滤波系数如下:

\[Gx = \left[
\begin{matrix}
-3 & 0 & 3\\
-10 & 0 & 10\\
-3 & 0 & 3\\
\end{matrix}
\right]
\]

\[Gy = \left[
\begin{matrix}
-3 & -10 & -3\\
0 & 0 & 0\\
3 & 10 & 3\\
\end{matrix}
\right]
\]

Scharr 算子在 OpenCV 中的方法原型如下:

def Scharr(src, ddepth, dx, dy, dst=None, scale=None, delta=None, borderType=None):
  • src: 表示输入图像
  • ddepth: 表示目标图像所需的深度,针对不同的输入图像,输出目标图像有不同的深度
  • dx: 表示 x 方向上的差分阶数,取值 1 或 0
  • dy: 表示 y 方向上的差分阶数,取值 1 或 0

可以看到,函数 Scharr()Sobel() 是非常的相似,在使用上也是完全一样的,下面看一个示例:

import cv2 as cv
import matplotlib.pyplot as plt img = cv.imread("maliao.jpg")
rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB) gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # Scharr 算子
x = cv.Scharr(gray_img, cv.CV_16S, 1, 0) # X 方向
y = cv.Scharr(gray_img, cv.CV_16S, 0, 1) # Y 方向
absX = cv.convertScaleAbs(x)
absY = cv.convertScaleAbs(y)
Scharr = cv.addWeighted(absX, 0.5, absY, 0.5, 0) # 显示图形
plt.rcParams['font.sans-serif']=['SimHei'] titles = ['原始图像', 'Scharr 算子']
images = [rgb_img, Scharr] for i in range(2):
plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()

LOG 算子

LOG ( Laplacian of Gaussian ) 边缘检测算子是 David Courtnay Marr 和 Ellen Hildreth 在 1980 年共同提出的,也称为 Marr & Hildreth 算子,它根据图像的信噪比来求检测边缘的最优滤波器。该算法首先对图像做高斯滤波,然后再求其拉普拉斯( Laplacian )二阶导数,根据二阶导数的过零点来检测图像的边界,即通过检测滤波结果的零交叉( Zero crossings )来获得图像或物体的边缘。

LOG 算子实际上是把 Gauss 滤波和 Laplacian 滤波结合了起来,先平滑掉噪声,再进行边缘检测。

LOG 算子与视觉生理中的数学模型相似,因此在图像处理领域中得到了广泛的应用。

它具有抗干扰能力强,边界定位精度高,边缘连续性好,能有效提取对比度弱的边界等特点。

常见的 LOG 算子是 5 * 5 的模板;

\[Gy = \left[
\begin{matrix}
-2 & -4 & -4 & -4 & -2\\
-4 & 0 & 8 & 0 & -4\\
-4 & 8 & 24 & 8 & -4\\
-4 & 0 & 8 & 0 & -4\\
-2 & -4 & -4 & -4 & -2\\
\end{matrix}
\right]
\]

LOG 算子到中心的距离与位置加权系数的关系曲线像墨西哥草帽的剖面,所以 LOG 算子也叫墨西哥草帽滤波器。

示例代码如下:

import cv2 as cv
import matplotlib.pyplot as plt # 读取图像
img = cv.imread("maliao.jpg")
rgb_img = cv.cvtColor(img, cv.COLOR_BGR2RGB) gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 先通过高斯滤波降噪
gaussian = cv.GaussianBlur(gray_img, (3, 3), 0) # 再通过拉普拉斯算子做边缘检测
dst = cv.Laplacian(gaussian, cv.CV_16S, ksize=3)
LOG = cv.convertScaleAbs(dst) # 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示图形
titles = ['原始图像', 'LOG 算子']
images = [rgb_img, LOG] for i in range(2):
plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()

小结

边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此需要采用滤波器来过滤噪声,并调用图像增强或阈值化算法进行处理,最后再进行边缘检测。

参考

https://blog.csdn.net/Eastmount/article/details/89056240

https://blog.csdn.net/qq_42722197/article/details/103825409

https://www.jianshu.com/p/2ac784fd22fc

Python 图像处理 OpenCV (13): Scharr 算子和 LOG 算子边缘检测技术的更多相关文章

  1. Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  2. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  3. Python 图像处理 OpenCV (15):图像轮廓

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Python 图像处理 OpenCV (16):图像直方图

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  5. Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 普通操作 1. 读取像素 读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B.G.R三个分量. 需 ...

  6. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...

  8. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. Quartz SpringBoot 简单整合一下

    一次简单的代码整合记录. 数据库准备 如果是MySQL可能出现一些小问题.比如联合主键长度超限制,已经记录解决办法了. CREATE TABLE QRTZ_JOB_DETAILS ( SCHED_NA ...

  2. [TopCoder]Seatfriends

    题目   点这里看题目. 分析   可以想到用 DP 解决.   由于把空位放到状态里面太麻烦了,因此我们单独将 " 组 " 提出来进行 DP .   \(f(i,j)\):前\( ...

  3. 攻防世界misc新手区前三题

    1.this_is_flag 从题目以及题目的描述来看,不难发现实际上题目中所描述的就是flag 2.Pdf 拿到题目附件是pdf文件,观察题目描述,题目说图下面什么都没有,那么十有八九图下面肯定是f ...

  4. 【JMeter_16】JMeter逻辑控制器__随机控制器<Random Controller>

    随机控制器<Random Controller> 业务逻辑: 当每次执行到该逻辑控制器时,随机挑选控制器下的任意一个子节点<取样器.逻辑控制器> Ignore sub-cont ...

  5. Cookie的简介与使用

    Cookie 历来指就着牛奶一起吃的点心.然而,在因特网内,"Cookie"这个字有了完全不同的意思.那么"Cookie"到底是什么呢?"Cookie ...

  6. Accelerate Framework in Swift

    介绍: 最近看到这篇文章有对Accelerate框架有一个介绍,自己也按照作者给的思路整理了一遍,也算是对这一框架的一个重新的回顾和学习,在以前研究AR先关只是的时候有接触到这个框架,赞具体里面的东西 ...

  7. 大文件上传、断点续传、秒传、beego、vue

    大文件上传 0.项目源码地址 源码地址 :https://github.com/zhuchangwu/large-file-upload 它是个demo,仅供参考 前端基于 vue-simple-up ...

  8. HttpClient优化

    HttpClient优化思路: 1.池化 2.长连接 3.httpclient和httpget复用 4.合理的配置参数(最大并发请求数,各种超时时间,重试次数) 5.异步 6.多读源码 1.背景我们有 ...

  9. 《HelloGitHub》第 51 期

    兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程.对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编 ...

  10. js语法基础入门(4)

    4.运算符 4.1.什么是运算符? 运算符就是用来表示具体运算规则的符号,例如数学计算中的加减乘除就是具体的运算规则,我们分别用"+ - * /"等符号来表示 4.2.运算符的分类 ...