P2986 [USACO10MAR]伟大的奶牛聚集(思维,dp)
题目描述
Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.
Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。
Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has length L_i (1 <= L_i <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has C_i (0 <= C_i <= 1,000) cows living in it.
每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。
When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is C_i*20). Help Bessie choose the most convenient location for the Great Cow Gathering.
在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。
Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.
1 3 4 5
@--1--@--3--@--3--@[2]
[1] |
2 | @[1] 2 Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location:
Gather ----- Inconvenience ------
Location B1 B2 B3 B4 B5 Total
1 0 3 0 0 14 17
2 3 0 0 0 16 19
3 1 2 0 0 12 15
4 4 5 0 0 6 15
5 7 8 0 0 0 15
If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:
Barn 1 0 -- no travel time there!
Barn 2 3 -- total travel distance is 2+1=3 x 1 cow = 3 Barn 3 0 -- no cows there!
Barn 4 0 -- no cows there!
Barn 5 14 -- total travel distance is 3+3+1=7 x 2 cows = 14 So the total inconvenience is 17.
The best possible convenience is 15, achievable at by holding the Gathering at barns 3, 4, or 5.
输入输出格式
输入格式:
* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer: C_i
* Lines N+2..2*N: Line i+N+1 contains three integers: A_i, B_i, and L_i
第一行:一个整数 N 。
第二到 N+1 行:第 i+1 行有一个整数 C_i
第 N+2 行到 2*N 行:第 i+N+1 行为 3 个整数:A_i,B_i 和 L_i。
输出格式:
* Line 1: The minimum inconvenience possible
第一行:一个值,表示最小的不方便值。
输入输出样例
输入样例#1: 复制
5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3
输出样例#1: 复制
15
题意:
在一棵树上找一个点,使得其余各点到该点的加权路径最小。
思路:
思维题,先统计其余各点到根节点的路径总和,时间复杂度O(n)。
然后根据根节点的路径总和向其他节点扩散(dp),求出树上其余节点到固定节点的路径和,时间复杂度O(n)。
#include<bits/stdc++.h>
#define mp make_pair
#define pb push_back
using namespace std;
#define int long long
const int inf=1e18;
int cnt[100005],f[100005],dp[100005];
int c[100005];
int vis[100005];
vector<pair<int,int> > ed[100005];
int tot=0;
int n;
void dfs(int u){
vis[u]=1;
cnt[u]+=c[u];
for(auto to:ed[u]){
int nxt=to.first,d=to.second;
if(!vis[nxt]){
dfs(nxt); cnt[u]+=cnt[nxt];
f[u]+=f[nxt]+cnt[nxt]*d;
}
}
} void dfs2(int u){
vis[u]=1;
for(auto to:ed[u]){
int nxt=to.first,d=to.second;
if(!vis[nxt]){
dp[nxt]=min(dp[nxt],dp[u]-cnt[nxt]*d+(tot-cnt[nxt])*d);
dfs2(nxt);
}
}
} signed main(){
scanf("%lld",&n);
for(int i=1;i<=n;i++) scanf("%lld",&c[i]);
for(int i=1;i<=n-1;i++){
int a,b,l;
scanf("%lld %lld %lld",&a,&b,&l);
ed[a].pb(mp(b,l));
ed[b].pb(mp(a,l));
} dfs(1); memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++) dp[i]=inf; tot=cnt[1];
dp[1]=f[1]; dfs2(1); int ans=inf;
for(int i=1;i<=n;i++) ans=min(ans,dp[i]); printf("%lld\n",ans); return 0;
}
P2986 [USACO10MAR]伟大的奶牛聚集(思维,dp)的更多相关文章
- 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- [洛谷P2986][USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目大意:给你一棵树,每个点有点权,边有边权,求一个点,使得其他所有点到这个点的距离和最短,输出这个距离 题解:树形$DP$,思路清晰,转移显然 卡点:无 C++ Code: #include < ...
- LUOGU P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
传送门 解题思路 首先第一遍dfs预处理出每个点的子树的siz,然后可以处理出放在根节点的答案,然后递推可得其他答案,递推方程 sum[u]=sum[x]-(val[i]*siz[u])+(siz[1 ...
- [USACO10MAR] 伟大的奶牛聚集 - 树形dp
每个点有重数,求到所有点距离最小的点 就是魔改的重心了 #include <bits/stdc++.h> using namespace std; #define int long lon ...
- [USACO10MAR]伟大的奶牛聚集
[USACO10MAR]伟大的奶牛聚集 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会. 每个奶牛居住在 N(1<=N& ...
- [USACO10MAR]伟大的奶牛聚集 BZOJ 1827 树形dp+dfs
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
随机推荐
- Springboot 使用logback直接将日志写入Elasticsearch
正常情况下,一般组合为elk 即日志会通过logstash写入es,但本文主要为轻量级项目直接利用appender写入es 首先需要引入包 <dependency> <groupId ...
- Happens-Before原则到底规定了什么
Happens-Before 规则 如何理解 Happens-Before 呢?如果望文生义(很多网文也都爱按字面意思翻译成"先行发生"),那就南辕北辙了,Happens-Befo ...
- 解决Linux所有命令不能使用的问题
解决Linux所有命令不能使用的问题 出现这个问题说明你的 /etc/profile 配置出现了问题,一般是因为path配置出现了问题.排除添加内容中的错误,然后重启一个新窗口执行执行 source ...
- 交换机配置OSPF负载分担
组网图形 OSPF负载分担简介 等价负载分担ECMP(Equal-Cost Multiple Path),是指在两个网络节点之间同时存在多条路径时,节点间的流量在多条路径上平均分摊.负载分担的作用是减 ...
- php代码审计小技巧
1.file_put_contents()函数:众所周知此函数是将一个字符串写入至文件中. 看到此函数说明当传入数据为数组时,会被PHP强制转换为字符串,因此会绕过正则达到getshell的目的. & ...
- php 文件上传错误
假设文件上传字段的名称img,则: $_FILES['img']['error']有以下几种类型 1.UPLOAD_ERR_OK 其值为 0,没有错误发生,文件上传成功. 2.UPLOAD_ERR_I ...
- Java篇:Docker的介绍安装 和常用命令
文章目录 为什么 出现docker Docker的简介 容器(Container) 镜像(Image) 仓库(Repository) Docker的安装 查看容器 删除镜像 删除容器 部署应用 以my ...
- C# 链表 二叉树 平衡二叉树 红黑树 B-Tree B+Tree 索引实现
链表=>二叉树=>平衡二叉树=>红黑树=>B-Tree=>B+Tree 1.链表 链表结构是由许多节点构成的,每个节点都包含两部分: 数据部分:保存该节点的实际数据. 地 ...
- MySQL:判断逗号分隔的字符串中是否包含某个字符串 && 如何在一个以逗号分隔的列表中的一个字段中连接MySQL中的多对多关系中的数据
需求: sql语句中,判断以逗号分隔的字符串中是否包含某个特定字符串,类似于判断一个数组中是否包含某一个元素, 例如:判断 'a,b,c,d,e,f,g' 中是否包含 'a',sql语句如何 ...
- STM32F103的CAN结构体学习
使用STM32F103的CAN通信就是用这4个结构体函数,把他们理解透了,CAN就好用了 CAN的结构体定义在stm32f10x_can.h里面 /************************** ...