在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它。我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比较理想的话则可以放到线上使用,如果不理想的话则需要反复的去调整相关参数进行训练直到达到目的。

而准确率、精确率、召回率和F1值则是选出目标的重要评价指标,我们看下这些指标的定义:

  • 若一个实例为正类,实际预测为正类,即为真正类(True Positv TP)
  • 若一个实例为负类,实际预测为负类,即为真负类(True Negative TN)
  • 若一个实例为负类,实际预测为正类,即为假正类(False Positv FP)
  • 若一个实例为正类,实际预测为负类,即为假负类(True Negative, TN)

如下表所示,其中1代表正类、0代表负类

预测
1 0 合计
实际 1 True Positive TP False Negative FN Actual Positive(TP+FN)
0 False Positive FP True Negative TN Actival Netagive(FP+TN)
合计 Predicted Positive(TP+FP) Predicted Negative(TN+FN) TP+FN+FP+TN
TP:正确的匹配数目
FP:误分类,匹配不正确的数目
FN:漏分类,没有找到正确匹配的数目
TN:正确的非匹配数目
针对正样本的相关计算,负样本可以同样方法计算
准确率(正确率)=所有预测正确的样本/总的样本 (TP+TN)/总
精确率=将正类预测为正类/所有预测为正类 TP/(TP+FP)
召回率=将正类预测为正类/所有真正的正类 TP/(TP+FN)
F值=精确率*召回率*2/(精确率+召回率) (F值为精确率和召回率的调和平均值)

上述计算是针对二分类的方式进行计算,如果是针对多分类的方式,可以针对每一个类别分别计算精确率、召回率,而后计算各个分类的F值,最后将F值取平均即可。

准确率、精确率、召回率、F1的更多相关文章

  1. 机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)

    摘要: 数据挖掘.机器学习和推荐系统中的评测指标—准确率(Precision).召回率(Recall).F值(F-Measure)简介. 引言: 在机器学习.数据挖掘.推荐系统完成建模之后,需要对模型 ...

  2. 评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)

    为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间 ...

  3. 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

    下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度 ...

  4. 推荐系统评测指标--准确率(Precision)和召回率(Recall)、F值(F-Measure)

    转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个 ...

  5. 准确率(Precision)、召回率(Recall)以及F值(F-Measure)

    转载自:http://blog.csdn.net/yechaodechuntian/article/details/37394967 https://www.zhihu.com/question/19 ...

  6. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  7. 信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC

    原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常 ...

  8. 准确率P 召回率R

    Evaluation metricsa binary classifier accuracy,specificity,sensitivety.(整个分类器的准确性,正确率,错误率)表示分类正确:Tru ...

  9. (七)7.2 应用机器学习方法的技巧,准确率,召回率与 F值

    建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多 ...

随机推荐

  1. MySQL基础架构分析

    文章已托管到GitHub,大家可以去GitHub查看阅读,欢迎老板们前来Star! 搜索关注微信公众号 码出Offer 领取各种学习资料! MySQL基础架构 一.引言 我们在学习MySQL的时候,迈 ...

  2. TIBCO Jasper Report 中显示图片的方式

    最近在做的项目中,需要输出很多报表类文档,于是选择用jasper来帮助完成. 使用jasper studio的版本是 :TIB_js-studiocomm_6.12.2_windows_x86_64. ...

  3. 浅谈工业4.0背景下的空中数据端口,无人机3D 可视化系统的应用

    前言 近年来,无人机的发展越发迅速,既可民用于航拍,又可军用于侦察,涉及行业广泛,把无人机想象成一个“会飞的传感器”,无人机就成了工业4.0的一个空中数据端口,大至地球物理.气象.农业数据.小至个人位 ...

  4. 【Python学习笔记三】一个简单的python爬虫

    这里写爬虫用的requests插件 1.一般那3.x版本的python安装后都带有相应的安装文件,目录在python安装目录的Scripts中,如下:   2.将scripts的目录配置到环境变量pa ...

  5. 获取字符串指定字符的第n次出现位置

    create function uf_findx (@text nvarchar(max),@find_x varchar(200),@find_n int)returns intasbegin -- ...

  6. Unable to find a constructor that takes a String param or a valueOf() or fromString() method

    Unable to find a constructor that takes a String param or a valueOf() or fromString() method 最近在做服务的 ...

  7. Monster Audio 使用教程(一)入门教程 + 常见问题

    Monster Audio支持的操作系统: windows 7 64bit 至 windows 10 64bit 受支持的VST: Vst 64bit.Vst3 64bit 受支持的声卡驱动: ASI ...

  8. idea2020安装教程

    2019最新版IDEA亲测可用, 2020最新版IDEA亲测可用, 重要的事说三遍: 如果自己破解不成功建议加群咨询群主:422167709   成功的也可以进群交流 激活码1 N757JE0KCT- ...

  9. 第37课 智能指针分析(指针特征操作符( -> 、 *)重载)

    1. 永恒的话题:内存泄漏 (1)动态申请堆空间,用完后不归还 (2)C++语言中没有垃圾回收的机制 (3)指针无法控制所指堆空间的生命周期------------指针是变量,可以指向内存堆空间,但是 ...

  10. expect使用技巧

    1) 获取命令行参数,例如通过./abc.exp a1 a2执行expect脚本 set 变量名1 [lindex $argv 0] 获取第1个参数a1 set 变量名2 [lindex $argv ...