数组dist[],是当前求到的顶点v到顶点j的最短路径长度

数组path[]存放求到的最短路径,如path[4]=2,path[2]=3,path[3]=0,则路径{0,3,2,4}就是0到4的最短路径

数组S[]存放已经求到了最短路径的结点的集合

算法包括两个并行的for循环:

(1)辅助数组的初始化工作,dist[i]=G.getweight(v,i),时间复杂度为O(n)。

(2)顶点v是第一个求到了最短路径的结点,dist[v]=0,把它加入数组S[]。

(2)进行最短路径求解工作的二重嵌套循环,时间复杂度为O(n^2)。大循环重复n-1次,每次求出一个结点的最短路径长度dist[u]和最短路径path[u]:

    进行n次循环,每次从没有加入S[]的顶点中找出最短路径长度dist[i]最小的点,加入集合。

    进行n次循环,每次修改和该点相邻接的结点的最短路径长度dist[j]和最短路径path[j](先判断边是否存在)。

最后总的时间复杂度为O(n^2)。

template <class T,class E>
void ShortestPath(Graph<T,E>& G,T v,E dist[],int path[]){ //求到顶点v的最短路径存储在path[]中,最短距离存储在dist[]中
//G为带权有向图
int n=G.NumberOfVertices();
bool *S=new bool[n]; //数组S存放已经求到了最短路径的结点的集合
int i,j,k;
E w,min;
for (i=; i<n; i++) {
dist[i]=G.getWeight(v,i);
S[i]=false;
if(i!=v && dist[i]<maxValue) path[i]=v;
else path[i]=-;
}
S[v]=true;dist[v]=; //顶点v加入顶点集合
for (i=; i<n-; i++) {
min=maxValue; //每次循环前重置min和u
int u=v;
for (j=; j<n; j++)
if(S[j]==false && dist[j]<min){ //选不在S中具有最短路径的顶点u
u=j;
min=dist[j];
}
S[u]=true;
for(k=; k<n; k++){
w=G.getWeight(u,k);
if(S[k]==false && w<maxValue && dist[u]+w<dist[k]){
dist[k]=dist[u]+w;
path[k]=u;
}
}
}
} // 从path数组读取最短路径的算法
template <class T,class E>
void printShortestPath(Graph<T,E>& G,int v,E dist[],int path[]){
cout<<"从顶点"<<G.getValue(v)<<"到其它顶点的最短路径为:"<<endl;
int i,j,k,n=G.NumberOfVerticles();
int *d=new int[n];
for (i=o; i<n; i++)
if(i!=v){
j=i;k=;
while(j!=v){d[k++]=j;j=path[];}
cout<<"顶点"<<G.getValue(i)<<"的最短路径为"<<G.getValue(v);
while(k>){
cout<<G.getValue(d[--k])<<"";
cont<<"最短路径长度为:"<<dist[i]<<endl;
}
}
delete []d;
}

算法-图(1)Dijkstra求最短路径的更多相关文章

  1. POJ 3255 Roadblocks (Dijkstra求最短路径的变形)(Dijkstra求次短路径)

    Roadblocks Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16425   Accepted: 5797 Descr ...

  2. 图——图的Dijkstra法最短路径实现

    1,最短路径的概念: 1,从有向图中某一顶点(起始顶点)到达另一顶点(终止顶点)的路径中,其权值之和最小的路径: 2,问题的提法: 1,给定一个带权有向图 G 与起始顶点 v,求从 v 到 G 中其它 ...

  3. Dijkstra求最短路径

    单源点的最短路径问题:给定带权有向图G和源点V,求从V到G中其余各顶点的最短路径 Dijkstra算法描述如下: (1)用带权的邻接矩阵arcs表示有向图,arcs[i][j]表示弧<vi,vj ...

  4. Dijkstra求最短路径&例题

    讲了半天好像也许maybe听懂了一点,先写下来233 先整理整理怎么存(开始绕) 最简单的是邻接矩阵存,但是开到10000*10000就MLE了,所以我们用链式前向星存(据说是叫这个名字吧) 这是个什 ...

  5. POJ 2387 Til the Cows Come Home Dijkstra求最短路径

    Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...

  6. 【算法系列学习】Dijkstra求最短路 [kuangbin带你飞]专题四 最短路练习 D - Silver Cow Party

    https://vjudge.net/contest/66569#problem/D trick:1~N各点到X可以通过转置变为X到1~N各点 #include<iostream> #in ...

  7. 图之Dijkstra算法

    Dijkstra算法是一种求单源最短路的算法,即从一个点开始到所有其他点的最短路.其步骤如下: c语言实现如下:(使用邻接矩阵存储) #include <stdio.h> #include ...

  8. 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径

    自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...

  9. Dijkstra算法求最短路径(java)(转)

    原文链接:Dijkstra算法求最短路径(java) 任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到 ...

随机推荐

  1. MacOS下JDK8的安装与配置

    微信搜索"艺术行者",关注并回复关键词"jdk8"获取安装包和API文档资料! 一.安装环节 1.打开网页 https://www.oracle.com/jav ...

  2. Python os.makedev() 方法

    概述 os.makedev() 方法用于以major和minor设备号组成一个原始设备号.高佣联盟 www.cgewang.com 语法 makedev()方法语法格式如下: os.makedev(m ...

  3. 2020牛客暑期多校训练营 第二场 I Interval 最大流 最小割 平面图对偶图转最短路

    LINK:Interval 赛时连题目都没看. 观察n的范围不大不小 而且建图明显 考虑跑最大流最小割. 图有点稠密dinic不太行. 一个常见的trick就是对偶图转最短路. 建图有点复杂 不过建完 ...

  4. luogu 2478 [SDOI2010]城市规划 仙人掌上dp.

    LINK:城市规划 以前ls 让写的时候由于看不懂题目+以为在图中的环上dp非常困难所以放弃治疗了. 现在终于能把题目看懂了 泪目... 题目其实就是在说 给出一张图这个有一个非常好的性质 满足每个点 ...

  5. Python实现微信读书辅助工具

    [TOC] ##项目来源 这个有意思的项目是我从GitHub上找来的,起因是在不久前微信读书突然就设置了非会员书架数目上限,我总想做点什么来表达我的不满,想到可否用爬虫来获取某一本书的内容, 但是我技 ...

  6. Git科普文,Git基本原理&各种骚操作

    Git简单介绍 Git是一个分布式版本控制软件,最初由Linus Torvalds创作,于2005年以GPL发布.最初目的是为更好地管理Linux内核开发而设计. Git工作流程以及各个区域 Work ...

  7. 29-main()的使用说明

    * 1. main()方法作为程序的入口 * 2. main()方法也是一个普通的静态方法 * 3. main()方法可以作为我们与控制台交互的方式.(使用Scanner) 如何将控制台获取的数据传给 ...

  8. 015_go语言中的闭包

    代码演示 package main import "fmt" func intSeq() func() int { i := 0 return func() int { i++ r ...

  9. 朴素贝叶斯分类器基本代码 && n折交叉优化

    自己也是刚刚入门.. 没脸把自己的代码放上去,先用别人的. 加上自己的解析,挺全面的,希望有用. import re import pandas as pd import numpy as np fr ...

  10. ZooKeeper Watcher 机制

    前言 在 ZooKeeper 中,客户端可以向服务端注册一个监听器,监听某个节点或者其子节点列表,当监听对象发生变化时,服务端就会向指定的客户端发送通知,这是 ZooKeeper 中的 Watcher ...