luogu P3829 [SHOI2012]信用卡凸包 凸包 点的旋转
LINK:信用卡凸包
当 R==0的时候显然是一个点的旋转 之后再求凸包即可。
这里先说点如何旋转 如果是根据原点旋转的话 经过一个繁杂的推导可以得到一个矩阵。
[cosw,-sinw]
[sinw,cosw] 这个矩阵就是旋转矩阵 乘一下当前的坐标 [x,y] 就可以得到逆时针旋转w度的答案。
具体的 x'=xcosw-ysinw; y'=xsinw+ycosw.
顺时针转换一下即可。接下来考虑绕某个点进行旋转。
既然已经得到了绕原点旋转的方法了 此时让要旋转点的坐标减参考系的点的坐标 此时就可以把这个参考系的点当做原点了。
直接进行旋转最后回归原坐标系再加回来即可。
回到这道题,除了凸包还有比较ex的圆。
有圆我们只单单求出来凸包是不准的。
还是考虑换成多边形。可以发现将每个圆心链接起来求出的多边形的长度比原来的恰好少一个圆的周长。
多画几个图也是这样的。所以这道题就变成了求凸包的长度+一个圆的周长。
const int MAXN=100010;
const db Pi=acos(-1.0);
struct Vec
{
db x,y;Vec(){}Vec(db _x,db _y){x=_x;y=_y;}
inline Vec operator +(Vec b){return Vec(x+b.x,y+b.y);}
inline Vec operator -(Vec b){return Vec(x-b.x,y-b.y);}
inline Vec operator -(){return Vec(-x,-y);}
inline db operator *(Vec b){return x*b.x+y*b.y;}//点积
inline db operator %(Vec b){return x*b.y-b.x*y;}//叉积
inline db operator ~(){return x*x+y*y;}//模长的平方
inline bool operator ==(Vec b){return fabs(x-b.x)<=EPS&&fabs(y-b.y)<=EPS;}
inline bool operator !=(Vec b){return fabs(x-b.x)>EPS||fabs(y-b.y)>EPS;}
inline Vec Unit(){db _=sq(x*x+y*y);return Vec(x/_,y/_);}//单位化
inline Vec Norm(){db _=sq(x*x+y*y);return Vec(-y/_,x/_);}//单位法向量
inline bool Quad(){return y>EPS||(fabs(y)<=EPS&&x>=-EPS);}
inline bool operator <(Vec b){return fabs(y-b.y)<=EPS?x<b.x:y<b.y;}
};typedef Vec pt;
inline Vec operator /(Vec a,db k){return Vec(a.x/k,a.y/k);}
inline Vec operator *(db k,Vec a){return Vec(a.x*k,a.y*k);}
inline Vec operator *(Vec a,db k){return Vec(a.x*k,a.y*k);}
inline bool para(Vec a,Vec b){return fabs(a%b)<=EPS;}//判断a b是否平行
inline bool Toleft(Vec a,Vec b){return b%a>EPS;}//判断a是否在b的左边
inline void O(pt a,char c=' '){printf("(%.3lf,%.3lf)%c",a.x,a.y,c);}
int n,top,cnt;
pt a[MAXN],s[MAXN],LTL;
db A,B,R;
inline bool cmpltl(pt a,pt b){return para(a=a-LTL,b=b-LTL)?~a<~b:Toleft(b,a);}
signed main()
{
freopen("1.in","r",stdin);
gt(n);
gi(A);gi(B);gi(R);
rep(1,n,i)
{
db x,y,w;
gi(x);gi(y);gi(w);
db s1=B/2-R;db s2=A/2-R;
db xx=s1,yy=s2;
db sx=xx*cos(w)-yy*sin(w);
db sy=xx*sin(w)+yy*cos(w);
a[++cnt]=Vec(sx+x,sy+y);
xx=-s1;yy=-s2;
sx=xx*cos(w)-yy*sin(w);
sy=xx*sin(w)+yy*cos(w);
a[++cnt]=Vec(sx+x,sy+y);
xx=s1;yy=-s2;
sx=xx*cos(w)-yy*sin(w);
sy=xx*sin(w)+yy*cos(w);
a[++cnt]=Vec(sx+x,sy+y);
xx=-s1;yy=s2;
sx=xx*cos(w)-yy*sin(w);
sy=xx*sin(w)+yy*cos(w);
a[++cnt]=Vec(sx+x,sy+y);
}
LTL=*min_element(a+1,a+1+cnt);
//rep(1,cnt,i)O(a[i],'\n');
sort(a+1,a+1+cnt,cmpltl);
rep(1,cnt,i)
{
while(top>1&&!Toleft(a[i]-s[top-1],s[top]-s[top-1]))--top;
s[++top]=a[i];
}
db ans=0;s[top+1]=s[1];
rep(1,top,i)ans+=sq(~(s[i+1]-s[i]));
ans+=2*Pi*R;
printf("%.2lf",ans);
return 0;
}
luogu P3829 [SHOI2012]信用卡凸包 凸包 点的旋转的更多相关文章
- P3829 [SHOI2012]信用卡凸包
思路 注意到结果就是每个信用卡边上的四个圆心的凸包周长+一个圆的周长 然后就好做了 注意平行时把距离小的排在前面,栈中至少要有1个元素(top>1),凸包中如果存在叉积为0的点也要pop,否则可 ...
- [洛谷P3829][SHOI2012]信用卡凸包
题目大意:有$n$张一模一样的信用卡,每个角进行了圆滑处理,问这些卡组成的“凸包”的周长 题解:发现是圆滑处理的圆心围成的凸包加上一个圆周即可 卡点:输入长宽弄反,然后以为是卡精 C++ Code: ...
- 【BZOJ2829】[SHOI2012]信用卡凸包(凸包)
[BZOJ2829][SHOI2012]信用卡凸包(凸包) 题面 BZOJ 洛谷 题解 既然圆角的半径都是一样的,而凸包的内角和恰好为\(360°\),所以只需要把圆角的圆心弄下来跑一个凸包,再额外加 ...
- Luogu P2742 模板-二维凸包
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...
- POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳
题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...
- Luogu-3829 [SHOI2012]信用卡凸包
这道题的转化很巧妙,可以把信用卡四个角的圆心看做平面上的点来做凸包,\(ans\)就是凸包周长加上一个圆的周长 // luogu-judger-enable-o2 #include<cmath& ...
- [SHOI2012]信用卡凸包(凸包+直觉)
这个题还是比较有趣. 小心发现,大胆猜想,不用证明! 我们发现所谓的信用卡凸包上弧的长度总和就是圆的周长! 然后再加上每个长宽都减去圆的直径之后的长方形的凸包周长即可! #include<ios ...
- [SHOI2012]信用卡凸包(计算几何)
/* 考验观察法?? 可以发现最终答案等于所有作为圆心的点求出凸包的周长加上一个圆的周长 向量旋转 (x1, y1) 相较于 (x2, y2) 旋转角c 答案是 (dtx * cosc - dty * ...
- BZOJ2829信用卡凸包——凸包
题目描述 输入 输出 样例输入 2 6.0 2.0 0.0 0.0 0.0 0.0 2.0 -2.0 1.5707963268 样例输出 21.66 提示 本样例中的2张信用卡的轮廓在上图中用实线标出 ...
随机推荐
- P3261 [JLOI2015]城池攻占 题解
题目 小铭铭最近获得了一副新的桌游,游戏中需要用 \(m\) 个骑士攻占 \(n\) 个城池.这 \(n\) 个城池用 \(1\) 到 \(n\) 的整数表示.除 \(1\) 号城池外,城池 \(i\ ...
- 从零开始学Electron笔记(一)
前端技术在最近几年迅猛发展,在任何开发领域我们都能看到前端的身影,从PC端到手机端,从APP到小程序,似乎前端已经无所不能,这就要求我们需要不断地去学习来提升自己!前段时间尤大通过直播介绍了一下Vue ...
- 前端进阶笔记(一)---JS语言通识
一.语言按照语法分类 1.非形式语言:中文 英文 2.形式语言:乔姆斯基谱系(四种文法 上下文包含文法) 0型 无限制文法 1型 上下文相关文法 2型 上下文无关文法 正则文法 二 产生式(BNF) ...
- Python 的print报错SyntaxError: invalid syntax
1. #!/usr/bin/python print "hello world!" print报错:SyntaxError: Missing parentheses in call ...
- java 面向对象(三十七):反射(一) 反射的概述
1.本章的主要内容 2.关于反射的理解 Reflection(反射)是被视为动态语言的关键,反射机制允许程序在执行期借助于Reflection API取得任何类的内部信息,并能直接操作任意对象的内部属 ...
- VMWare WorkStation中MacOS虛擬機無法啓動的問題
關於MacOS虛擬機,在有VMWare重裝,升級以及MacOS更新時,都可能會造成破解補丁失效,因此儅Mac虛擬機無法啓動時,可以嘗試以下操作: 重新運行unlocker208中的win-instal ...
- 记一次开发CefSharp做浏览器时Facebook广告页支付方式绑定不上Paypal问题
问题:用CefSharp做浏览器开发.在做Facebook广告页面绑定Paypal支付方式时出现了绑定不上的问题. 让我们来还原问题的步骤: 第一步登录Facebook. 第二步进入广告绑卡页面选择P ...
- bzoj3378[Usaco2004 Open]MooFest 狂欢节*
bzoj3378[Usaco2004 Open]MooFest 狂欢节 题意: n只奶牛,第i只听力为vi,坐标为xi,两只奶牛聊天时音量是max(vi,vj)*abs(xi-xj).求n(n-1)/ ...
- T3 成绩单 题解
这个题本来不归我讲,但我A完之后觉得太坑了,还是讲一下吧. 首先这个题有个重要的地方:(字典顺序,学号全为小写字母,从小到大排列) 字典序和字典顺序是不一样的!!! 我以为是字典序……,wa了,字典顺 ...
- three.js 制作属于自己的动态二维码
今天郭先生说一下用canvas解析图片流,然后制作一个动态二维码的小案例,话不多说先上图,在线案例点击博客原文.这是郭先生的微信二维码哦! 1. 解析图片流 canvas = document.cre ...