[BZOJ]2132: 圈地计划 最小割
圈地计划
Description
最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地。据了解,这块土地是一块矩形的区域,可以纵横划分为N×M块小区域。GDOI要求将这些区域分为商业区和工业区来开发。根据不同的地形环境,每块小区域建造商业区和工业区能取得不同的经济价值。更具体点,对于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益。另外不同的区域连在一起可以得到额外的收益,即如果区域(I,j)相邻(相邻是指两个格子有公共边)有K块(显然K不超过4)类型不同于(I,j)的区域,则这块区域能增加k×Cij收益。经过Tiger.S教授的勘察,收益矩阵A,B,C都已经知道了。你能帮GDOI求出一个收益最大的方案么?
Input
输入第一行为两个整数,分别为正整数N和M,分别表示区域的行数和列数;第2到N+1列,每行M个整数,表示商业区收益矩阵A;第N+2到2N+1列,每行M个整数,表示工业区收益矩阵B;第2N+2到3N+1行,每行M个整数,表示相邻额外收益矩阵C。第一行,两个整数,分别是n和m(1≤n,m≤100);
Output
输出只有一行,包含一个整数,为最大收益值。
Sample Input
3 3
1 2 3
4 5 6
7 8 9
9 8 7
6 5 4
3 2 1
1 1 1
1 3 1
1 1 1
Sample Output
81
【数据规模】
对于100%的数据有N,M≤100
观察题目,基本与happiness相同,所以基本也就是二分图的最小割,唯一有差别的是happiness中是属于相同的得到喜悦值,而这个是属于不同集合得到喜悦值。
这一点很难,这一点很难。
最先我想的是把中间的权令为-(w1+w2),但很明显网络流跑不起负的(可见我网络流多差,这个都不知道),然后怎么办呢?很难办。
既然我们不能用负边连体现这个关系。考虑happiness,A与B点同属于一个集合就得到这个喜悦值,注意到这里指的是属于S集,T集,那么一个精妙的变换方案出现了,我们先黑白染色,对于每个黑点A,S->A:W商业,A->T:W工业,
对于每个白点B,S->B:W工业,B->T:W商业,对于每对有关系的两点A,B,A<-->B:w1+w2。
一切问题就迎刃而解了,真是一种精妙的办法啊。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <ctime>
#include <cmath>
using namespace std;
int s,t;
int n,m;
int sum=0;
int C[200][200];
int tot=1;
int fir[200000],en[200000],nex[200000],f[200000];
void ins(int a,int b,int c,int d){
nex[++tot]=fir[a];
fir[a]=tot;
en[tot]=b;
f[tot]=c; nex[++tot]=fir[b];
fir[b]=tot;
en[tot]=a;
f[tot]=d;
}
int flow;
int d[200000],now[200000],num[200000],pre[200000],his[200000];
void sap(){
flow=0;
for (int i=0;i<=t;i++){
now[i]=fir[i];
d[i]=num[i]=0;
}
num[0]=t;
int aug=0x7fffffff;
bool flag;
int i=s;
while (d[s]<t){
his[i]=aug;
flag=false;
for (int k=now[i];k;k=nex[k])
if (f[k]>0&&d[i]==d[en[k]]+1){
aug=min(aug,f[k]);
flag=true;
now[i]=k;
pre[en[k]]=i;
i=en[k];
if (i==t){
flow+=aug;
while (i!=s){
i=pre[i];
f[now[i]]-=aug;
f[now[i]^1]+=aug;
}
aug=0x7fffffff;
}
break;
}
if (flag) continue;
int k1=0,minn=t;
for (int k=fir[i];k;k=nex[k])
if (f[k]>0&&minn>d[en[k]]){
k1=k;
minn=d[en[k]];
}
now[i]=k1;
if (!--num[d[i]]) return;
d[i]=minn+1;
num[d[i]]++; if (i!=s){
i=pre[i];
aug=his[i];
}
}
}
int main(){
// freopen("2132.in","r",stdin);
// freopen("2132.out","w",stdout);
scanf("%d%d",&n,&m);
s=n*m+1;t=n*m+2;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++){
int delta;
scanf("%d",&delta);
if ((i+j)%2==0) ins(s,(i-1)*m+j,delta,0);
if ((i+j)%2==1) ins((i-1)*m+j,t,delta,0);
sum+=delta;
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++){
int delta;
scanf("%d",&delta);
if ((i+j)%2==1) ins(s,(i-1)*m+j,delta,0);
if ((i+j)%2==0) ins((i-1)*m+j,t,delta,0);
sum+=delta;
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++){
scanf("%d",&C[i][j]);
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m-1;j++){
ins((i-1)*m+j,(i-1)*m+j+1,C[i][j]+C[i][j+1],C[i][j]+C[i][j+1]);
sum+=C[i][j]+C[i][j+1];
}
for (int i=1;i<=n-1;i++)
for (int j=1;j<=m;j++){
ins((i-1)*m+j,i*m+j,C[i][j]+C[i+1][j],C[i][j]+C[i+1][j]);
sum+=C[i][j]+C[i+1][j];
}
sap(); printf("%d",sum-flow); return 0;
}
[BZOJ]2132: 圈地计划 最小割的更多相关文章
- BZOJ 2131 圈地计划(最小割+黑白染色)
类似于happiness的一道题,容易想到最小割的做法. 但是不同的是那一道题是相邻的如果相同则有收益,这题是相邻的不同才有收益. 转化到建图上面时,会发现,两个相邻的点连的边容量会是负数.. 有一种 ...
- BZOJ 2132 圈地计划(最小割)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2132 题意:n*m的格子染色黑白,对于格子(i,j)染黑色则价值为A[i][j],白色为 ...
- 【BZOJ2132】圈地计划 最小割
[BZOJ2132]圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地. ...
- bzoj 2132 圈地计划(黑白染色,最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2132 [题意] 给定n*m个区域,建工业区价值A,建商业区价值B,如果(i,j)有k个 ...
- bzoj 2132 圈地计划【最小割+dinic】
对于网格图,尤其是这种要求相邻各自不同的,考虑黑白染色 对于这张染色后图来说: 对于每个黑格: 表示初始时选择商业区: s点向它连商业区收益的流量,它向t点连工业区收益的流量: 割断S侧的边说明反悔, ...
- bzoj 2132: 圈地计划
#include<cstdio> #include<iostream> #include<cstring> #define M 100009 #define inf ...
- [BZOJ 3144] [Hnoi2013] 切糕 【最小割】
题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...
- [BZOJ 3894] 文理分科 【最小割】
题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...
- BZOJ 2039 人员雇佣 二元关系 最小割
题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...
随机推荐
- vmware tools安装程序无法继续,Microsoft Runtime DLL安装程序未能完成安装。的解决方法
vmware tools安装程序无法继续,Microsoft Runtime DLL安装程序未能完成安装.的解决方法_华英雄_新浪博客 http://blog.sina.com.cn/s/blog_5 ...
- 基于SMB协议的共享文件读写
一.SMB协议 SMB协议是基于TCP-NETBIOS下的,一般端口使用为139,445. 服务器信息块(SMB)协议是一种IBM协议,用于在计算机间共享文件.打印机.串口等.SMB 协议可以用在因特 ...
- Linux的分段和分页机制
1.分段机制 80386的两种工作模式 80386的工作模式包括实地址模式和虚地址模式(保护模式).Linux主要工作在保护模式下. 分段机制 在保护模式下,80386虚地址空间可达16K个段,每 ...
- Oracle数据导入导出imp/exp sp2-0734:未知的命令开头'imp...解决方法
Oracle数据导入导出imp/exp sp2-0734:未知的命令开头'imp...解决方法 sp2-0734:未知的命令开头'imp 忽略了剩余行默认分类 www.2cto.com 应该 ...
- poj2823
这是一道题意简单,数据较大的题(喜闻乐见): 一开始可能会想到RMQ问题,ST,线段树都是O(nlogn),应该勉强能过(没试过): 由于这道题区间是滚动连续的,所以,可以使用单调队列! 以最小值为例 ...
- 一致性hash算法 - consistent hashing
consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 cache 系统中应用越来越广泛: 1 ...
- Xcode8安装不成功, 需要升级系统. The operation couldn't be completed. cpio read error
https://developer.apple.com/library/prerelease/content/documentation/DeveloperTools/Conceptual/Whats ...
- 【jQuery日期处理】两个时间大小的比较
function checkEndTime(){ var startTime=$("#startTime").val(); var start=new Date(startTime ...
- SCI杂志分区规则
1区:该期刊的影响因子排名位于其所在学科排名的前5% 2区:该期刊的影响因子排名位于其所在学科排名的前20%但未进入5% 3区:该期刊的影响因子排名位于其所在学科排名的前50%但未进入20%的 4区: ...
- GTK+布局管理
GTK+布局管理 GTK+ 布局管理 在本章中,我们将讲述如何将构件布置在窗口与对话框中. 当我们在设计应用程序的图形界面时,我们首先要决定的是在程序中用到哪种构件和管理应用程序中的这些构件.为了方便 ...