The Fewest Coins

Description
Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always pays for his goods in such a way that the smallest number of coins changes hands, i.e., the number of coins he uses to pay plus the number of coins he receives in change is minimized. Help him to determine what this minimum number is.
FJ wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1, V2, ..., VN (1 ≤ Vi ≤ 120). Farmer John is carrying C1 coins of value V1, C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner (although Farmer John must be sure to pay in a way that makes it possible to make the correct change).
Input
Line 1: Two space-separated integers: N and T.
Line 2: N space-separated integers, respectively V1, V2, ..., VN coins (V1, ...VN)
Line 3: N space-separated integers, respectively C1, C2, ..., CN
Output
Line 1: A line containing a single integer, the minimum number of coins involved in a payment and change-making. If it is impossible for Farmer John to pay and receive exact change, output -1.
Sample Input
3 70
5 25 50
5 2 1
Sample Output
3

题目大意:

    FJ同学去买东西,东西的价值为T,他和卖家都有N种金币,FJ希望交易完成时金币变化最小。

    求最少的金币变化数量。FJ的金币个数有限,奸商的金币数目无限。

解题思路:

    背包问题,FJ的每种金币个数有限可以看做是多重背包问题,奸商的金币数目无限可以看做是完全背包问题。

    设F1[i]为FJ付款为i时的最小金币数,设F2[i]为奸商找钱为i时的最小金币数。

    则F1[i+T]+F2[i]就是所求的最小金币变化数量。(F1用多重背包求解,F2用完全背包求解)

    PS:这里的背包求得是最小价值,且要恰好装满。故初始化数组时应 F[0]=0,F[1-MAXN]=INT_MAX;(好久没做背包了,下意识把F[1]=0了,结果T==1时总是输出0,查了好久。。。)

Code:

 #include<string>
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<limits.h>
#define MAXN 1000000
#define INF 9999999 //背包被调 直接抄的背包九讲,因为有两个数组,增加一个数组参数
using namespace std;
int N,V,c[MAXN+],a[MAXN+],w=,f1[MAXN+],f2[MAXN+];
int min(int a,int b)
{
return a>b?b:a;
}
void ZeroOnePack(int cost,int weight,int f[]) //01背包
{
for (int v=V; v>=cost; v--)
f[v]=min(f[v],f[v-cost]+weight);
}
void CompletePack(int cost,int weight,int f[]) //完全背包
{
for (int v=cost;v<=V;v++)
f[v]=min(f[v],f[v-cost]+weight);
}
void MultiplePack(int cost,int weight,int amount,int f[]) //多重背包
{
if (cost*amount>=V)
{
CompletePack(cost,weight,f);
return ;
}
int k=;
while (k<amount)
{
ZeroOnePack(k*cost,k*weight,f);
amount=amount-k;
k*=;
}
ZeroOnePack(amount*cost,amount*weight,f);
}
void init(int M,int f[])
{
f[]=; //保证背包装满 具体原因参见背包九讲
for (int i=; i<=M; i++) //求最小价值要把初值赋值为正无穷(INT_MAX可能会导致整型溢出)
f[i]=INF;
}
int main()
{
while (cin>>N>>V)
{ int V2=V;
int max=;
for (int i=; i<=N; i++){
cin>>c[i];
if (c[i]>max) max=c[i];}
for (int i=; i<=N; i++)
cin>>a[i];
V=max*max+V2+; //要找钱,V要比T大很多才行
init(V,f1);
init(V,f2);
for (int i=;i<=N;i++)
MultiplePack(c[i],,a[i],f1);
for (int i=;i<=N;i++)
CompletePack(c[i],,f2);
int ans=INF;
for (int i=;i<=V-V2;i++)
if (f1[i+V2]!=INF&&f2[i]!=INF) ans=min(ans,f1[i+V2]+f2[i]);
if (ans!=INF) printf("%d\n",ans); //ans==INF表示数据没有变过,则表示无解
else printf("-1\n");
}
return ;
}

POJ3260——The Fewest Coins(多重背包+完全背包)的更多相关文章

  1. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

  2. POJ3260:The Fewest Coins(混合背包)

    Description Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he a ...

  3. POJ3260 The Fewest Coins(混合背包)

    支付对应的是多重背包问题,找零对应完全背包问题. 难点在于找上限T+maxv*maxv,可以用鸽笼原理证明,实在想不到就开一个尽量大的数组. 1 #include <map> 2 #inc ...

  4. POJ 3260 The Fewest Coins(多重背包问题, 找零问题, 二次DP)

    Q: 既是多重背包, 还是找零问题, 怎么处理? A: 题意理解有误, 店主支付的硬币没有限制, 不占额度, 所以此题不比 1252 难多少 Description Farmer John has g ...

  5. poj3260 The Fewest Coins

    Description Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he a ...

  6. The Fewest Coins POJ - 3260

    The Fewest Coins POJ - 3260 完全背包+多重背包.基本思路是先通过背包分开求出"付出"指定数量钱和"找"指定数量钱时用的硬币数量最小值 ...

  7. POJ 3260 The Fewest Coins(完全背包+多重背包=混合背包)

    题目代号:POJ 3260 题目链接:http://poj.org/problem?id=3260 The Fewest Coins Time Limit: 2000MS Memory Limit: ...

  8. POJ3260The Fewest Coins[背包]

    The Fewest Coins Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6299   Accepted: 1922 ...

  9. POJ 1742 Coins(多重背包, 单调队列)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

随机推荐

  1. template_11实参演绎

    1,演绎过程匹配类型A(来自实参的类型),参数化类型P(行参参数声明)如果被声明的参数是一个引用声明g(T& )那么P就是所引用类型T:f(T)中P就是所声明的参数类: decay指从数组和函 ...

  2. Git初始化与上传

    一: 现在git上Create个repository 二:进入要长传的工程目录打开git bash git initgit statusgit add .//add .的时候文件不要被占用. git ...

  3. SVN全量备份+增量备份脚本

    一.全量备份 环境:一台主SVN,一台备SVN(主要提供备份功能),后续可通过钩子脚本进行实时备份,后续发给大家. 工作原理:通过svn的hotcopy命令过行热备份,并进行一系列的检查,备份后通过r ...

  4. jQuery插件开发 - 其实很简单

    [前言] jQuery已经被广泛使用,凭借其简洁的API,对DOM强大的操控性,易扩展性越来越受到web开发人员的喜爱,我在社区也发布了很多的jQuery插件,经常有人询问一些技巧,因此干脆写这么一篇 ...

  5. preventDefault()、stopPropagation()、return false 之间的区别

    “return false”之所以被误用的如此厉害,是因为它看起来像是完成了我们交给它的工作,浏览器不会再将我们重定向到href中的链接,表单也不会被继续提交,但这么做到底有什么不对呢? 可能在你刚开 ...

  6. cxgrid GridMode 等于 True 时的一些问题。

    When using grid mode, the data controller loads a fixed number of dataset records into memory. The n ...

  7. HTMLEncode httpencode UTF8Encode

    1.引用单元:  httpApp; 2. 对于 http Post的提交内容,应该是:   HttpEncode(Utf8Encode(StrValue));   不然与web方式的 Url_enco ...

  8. sql新感悟(where 1 = 1)

    花了好久把YII框架看完发现一本很不错的书:SQL案例解析(清华大学出版社),看到一些比较有用的东西,感觉应该把他记录下来,看了好多页发现书中一直有 where 1=1,这样的语句,查过发现“wher ...

  9. ValueError: No JSON object could be decoded?此种异常的解决方案之一

    第一次遇到这样的异常,实在不知道如何是好?进行了测试发现报错的json出没有问题,而且每次出现异常的位置不一样 于是我认为这样的问题可能是因为程序执行过快,所以很简单的解决办法是: def deal_ ...

  10. spring接收参数

    public class LogonModel { private String UserName; private String Password; public String getUserNam ...