Building a Space Station

题目链接:

http://acm.hust.edu.cn/vjudge/contest/124434#problem/C

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.

The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3

10.000 10.000 50.000 10.000

40.000 10.000 50.000 10.000

40.000 40.000 50.000 10.000

2

30.000 30.000 30.000 20.000

40.000 40.000 40.000 20.000

5

5.729 15.143 3.996 25.837

6.013 14.372 4.818 10.671

80.115 63.292 84.477 15.120

64.095 80.924 70.029 14.881

39.472 85.116 71.369 5.553

0

Sample Output

20.000

0.000

73.834

##题意:

给出n个球体的球心坐标和半径,可以在两个球体的表面连一条通路,代价为距离. 求使得所有球体联通的最小花费.


##题解:

裸的最小生成树.
注意两点之间的距离为 (球心距 - 半径和); 若这个式子小于0,则距离为0.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 110
#define mod 100000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

struct node{

int left,right;

double cost;

}road[maxn*maxn];

int cmp(node x,node y) {return x.cost<y.cost;}

int p[maxn],m,n;

int find(int x) {return p[x]=(p[x]==x? x:find(p[x]));}

double kruskal()

{

double ans=0;

for(int i=1;i<=n;i++) p[i]=i;

sort(road+1,road+m+1,cmp);

for(int i=1;i<=m;i++)

{

int x=find(road[i].left);

int y=find(road[i].right);

if(x!=y)

{

ans+=road[i].cost;

p[x]=y;

}

}

return ans;

}

int sign(double x) {

if(fabs(x)<eps) return 0;

return x<0? -1:1;

}

double x[maxn],y[maxn],z[maxn],r[maxn];

double get_dis(int a, int b) {

double d = sqrt((x[a]-x[b])(x[a]-x[b]) + (y[a]-y[b])(y[a]-y[b]) + (z[a]-z[b])*(z[a]-z[b]));

if(sign(d-r[a]-r[b]) >= 0) return d-r[a]-r[b];

return 0;

}

int main(int argc, char const *argv[])

{

//IN;

while(scanf("%d", &n) != EOF && n)
{
m = 0;
memset(road,0,sizeof(road)); for(int i=1; i<=n; i++) {
scanf("%lf %lf %lf %lf", &x[i],&y[i],&z[i],&r[i]);
} for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
road[++m].left = i;
road[m].right = j;
road[m].cost = get_dis(i,j);
}
} double ans=kruskal(); printf("%.3lf\n", ans);
} return 0;

}

POJ 2031 Building a Space Station (最小生成树)的更多相关文章

  1. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  2. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  5. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  6. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  7. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  8. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  9. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

随机推荐

  1. 类Item_field

    class Item_field :public Item_ident { protected: void set_field(Field *field); public: Field *field, ...

  2. bzoj3275: Number

    最小割...然后推一下可知不能的情况必定为一奇一偶,于是s->奇->偶->t.跑最小割即可. #include<cstdio> #include<cstring&g ...

  3. UVa 1153 Keep the Customer Satisfied 【贪心 优先队列】

    题意:给出n个工作,已知每个工作需要的时间last,以及截止时间end,(必须在截止时间之前完成)问最多能够完成多少个工作 首先预处理,将这n件任务按照截止时间从小到大排序 然后用一个cur记录当前做 ...

  4. TCP/IP详解学习笔记(4)-ICMP协议,ping和Traceroute

    1.IMCP协议介绍 前面讲到了,IP协议并不是一个可靠的协议,它不保证数据被送达,那么,自然的,保证数据送达的工作应该由其他的模块来完成.其中一个重要的模块就是ICMP(网络控制报文)协议. 当传送 ...

  5. Mysql 的存储过程和存储函数

    优点: v 提高安全性 v 简化mysql查询 v 减轻带宽负担 缺点: v 增加服务器负担 v 对我们开发者来说,难度大一点 PHP中的函数 Function funname(参数){ //函数体 ...

  6. hdu 1026 Ignatius and the Princess I(优先队列+bfs+记录路径)

    以前写的题了,现在想整理一下,就挂出来了. 题意比较明确,给一张n*m的地图,从左上角(0, 0)走到右下角(n-1, m-1). 'X'为墙,'.'为路,数字为怪物.墙不能走,路花1s经过,怪物需要 ...

  7. android让你的TabHost滑动起来

    在Android应用中,一般TabActivity和若干个Tab选项卡(TabWidget).如果选项卡的数量超过了5个,就不适合放到一个屏幕中,这样可以让这些选项卡滑动起来. 滑动的选项卡的实现有好 ...

  8. codeforces 678D Iterated Linear Function 矩阵快速幂

    矩阵快速幂的题要多做 由题可得 g[n]=A*g[n-1]+B 所以构造矩阵  { g[n] }    =  {A   B}  * { g[n-1]} {   1   }         {0   1 ...

  9. <转>准备Eclips+python+robot framework环境

    关于python: path添加:C:\Python27;C:\Python27\Scripts; 新加一项:  PYTHON_HOME    C:\Python27 再不行的话,加一个用户变量: P ...

  10. [原创]谷歌插件 - YE搜图助手(YeImageFinder)

    最新版本:下载 版本:v1.5 更新时间:2014年10月08日  +完善了:YeImageFinder:支持在每次启用插件时,也能正常绑定右键! +完善了:每次做完动作后,就马上关闭自身! 版本:v ...