Building a Space Station

题目链接:

http://acm.hust.edu.cn/vjudge/contest/124434#problem/C

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.

The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3

10.000 10.000 50.000 10.000

40.000 10.000 50.000 10.000

40.000 40.000 50.000 10.000

2

30.000 30.000 30.000 20.000

40.000 40.000 40.000 20.000

5

5.729 15.143 3.996 25.837

6.013 14.372 4.818 10.671

80.115 63.292 84.477 15.120

64.095 80.924 70.029 14.881

39.472 85.116 71.369 5.553

0

Sample Output

20.000

0.000

73.834

##题意:

给出n个球体的球心坐标和半径,可以在两个球体的表面连一条通路,代价为距离. 求使得所有球体联通的最小花费.


##题解:

裸的最小生成树.
注意两点之间的距离为 (球心距 - 半径和); 若这个式子小于0,则距离为0.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 110
#define mod 100000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

struct node{

int left,right;

double cost;

}road[maxn*maxn];

int cmp(node x,node y) {return x.cost<y.cost;}

int p[maxn],m,n;

int find(int x) {return p[x]=(p[x]==x? x:find(p[x]));}

double kruskal()

{

double ans=0;

for(int i=1;i<=n;i++) p[i]=i;

sort(road+1,road+m+1,cmp);

for(int i=1;i<=m;i++)

{

int x=find(road[i].left);

int y=find(road[i].right);

if(x!=y)

{

ans+=road[i].cost;

p[x]=y;

}

}

return ans;

}

int sign(double x) {

if(fabs(x)<eps) return 0;

return x<0? -1:1;

}

double x[maxn],y[maxn],z[maxn],r[maxn];

double get_dis(int a, int b) {

double d = sqrt((x[a]-x[b])(x[a]-x[b]) + (y[a]-y[b])(y[a]-y[b]) + (z[a]-z[b])*(z[a]-z[b]));

if(sign(d-r[a]-r[b]) >= 0) return d-r[a]-r[b];

return 0;

}

int main(int argc, char const *argv[])

{

//IN;

while(scanf("%d", &n) != EOF && n)
{
m = 0;
memset(road,0,sizeof(road)); for(int i=1; i<=n; i++) {
scanf("%lf %lf %lf %lf", &x[i],&y[i],&z[i],&r[i]);
} for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
road[++m].left = i;
road[m].right = j;
road[m].cost = get_dis(i,j);
}
} double ans=kruskal(); printf("%.3lf\n", ans);
} return 0;

}

POJ 2031 Building a Space Station (最小生成树)的更多相关文章

  1. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  2. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  5. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  6. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  7. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  8. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  9. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

随机推荐

  1. C#sqlbulkcopy的优化

    最近在进行项目的优化.现在部分数据的拷贝时间过长.需要进行上线前的优化,尝试,批次的数量和拷贝次数的之间的合理数值关系. 最近项目中使用到了SqlBulkCopy实现批量复制,在这里,我把部分代码筛选 ...

  2. NLP基本任务-nltk_data文本分割

    将文本分割为句子 nltk.sent_tokenize(text,language) text:需要分割的文本 language:语言种类 czech捷克语 danish丹麦语 dutch荷兰语 en ...

  3. 传感器(3)传感器的X,Y,Z轴

    设备正面水平向上. X轴 : 左右方向,向右是正值. Y轴 : 远近方向,远离你是负. Z轴 : 上下方向,向上是正值.

  4. 点(Dot)与像素(Pixel)的区别

    DPI中的点(Dot)与图像分辨率中的像素(Pixel)是容易混淆的两个概念, DPI中的点可以说是硬件设备最小的显示单元, 而像素则既可是一个点,又可是多个点的集合.在扫描仪扫描图像时,扫描仪的每一 ...

  5. angular依赖注入的理解(转)

    使用过java进行开发的人肯定知道大名鼎鼎的spring框架,对于spring的IOC肯定也有所了解,通过配置文件定义好bean之后,如果需要使用这些bean,不需要自己去实例化,而是跟spring这 ...

  6. nginx - ssl 配置 - globelsign ssl

    前提: 3个文件 - domain.csr.domain.key.xxx.cer 简述: 1. 本地生成 .key文件  [附件] 2. 再利用key文件,生成csr(certificate Secu ...

  7. linux下/etc/passwd和/etc/shadow文件

    /etc/passwd文件中保存的是用户的账号信息,而/etc/shadow文件中保存的是用户的口令信息. 一 /etc/passwd 一个用户对应着该文件中一行记录,一行记录由若干个字段组成,字段之 ...

  8. 基于ffmpeg的简单音视频编解码的例子

    近日需要做一个视频转码服务器,对我这样一个在该领域的新手来说却是够我折腾一番,在别人的建议下开始研究开源ffmpeg项目,下面是在代码中看到的一 段例子代码,对我的学习非常有帮助.该例子代码包含音频的 ...

  9. Ejabberd源码解析前奏--配置

    一.基本配置     配置文件将在你第一次启动ejabberd时加载,从该文件中获得的内容将被解析并存储到内部的ejabberd数据库中,以后的配置将从数据库加载,并且任何配置文件里的命令都会被添加到 ...

  10. “FormCRUD.csProj.FormMain.Name”隐藏了继承的成员“System.Windows.Forms.Control.Name”。如果是有意隐藏,请使用关键字 new。

    一旦运行就显示:“FormCRUD.csProj.FormMain.Name”隐藏了继承的成员“System.Windows.Forms.Control.Name”.如果是有意隐藏,请使用关键字 ne ...