HDU 4597 Play Game (DP,记忆化搜索,博弈)
题意:Alice和Bob玩一个游戏,有两个长度为N的正整数数字序列,每次他们两个,只能从其中一个序列,选择两端中的一个拿走。他们都希望可以拿到尽量大的数字之和,
并且他们都足够聪明,每次都选择最优策略。Alice先选择,问最终Alice拿到的数字总和是多少?
析:很明显的一个博弈题,但是用记忆化搜索来解决的,用d[la][ra][lb][rb]记录的是在a的区间只剩下la~ra,b的区间只剩下lb~rb的时候,Alice能得到的最大值,
那么我应该在让Bob取最大值中的最小才能满足这个题,当是Alice在选择时,她应该选择Bob选择后的最大的。我们可以用sum当前的总和来实现,也就是sum-Bob选的,
中最大的,可用记忆化来解决。
代码如下:
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
using namespace std ; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-8;
const int maxn = 1e6 + 5;
const int mod = 1e9 + 7;
const int dr[] = {0, 0, -1, 1};
const int dc[] = {-1, 1, 0, 0};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} int a[25], b[25];
int d[25][25][25][25]; int dfs(int la, int ra, int lb, int rb, int sum){
if(la > ra && lb > rb) return 0;
int &cnt = d[la][ra][lb][rb];
if(cnt) return cnt; int mmax = 0;
if(la <= ra) mmax = max(mmax, sum - min(dfs(la+1, ra, lb, rb, sum-a[la]), dfs(la, ra-1, lb, rb, sum-a[ra])));
if(lb <= rb) mmax = max(mmax, sum - min(dfs(la, ra, lb+1, rb, sum-b[lb]), dfs(la, ra, lb, rb-1, sum-b[rb])));
return cnt = mmax;
} int main(){
int sum;
int T; cin >> T;
while(T--){
sum = 0;
scanf("%d", &n);
memset(d, 0, sizeof(d));
for(int i = 1; i <= n; ++i) scanf("%d", &a[i]), sum += a[i];
for(int i = 1; i <= n; ++i) scanf("%d", &b[i]), sum += b[i]; cout << dfs(1, n, 1, n, sum) << endl;
}
return 0;
}
HDU 4597 Play Game (DP,记忆化搜索,博弈)的更多相关文章
- 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索
题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...
- 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索
[题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...
- !HDU 1078 FatMouse and Cheese-dp-(记忆化搜索)
题意:有一个n*n的格子.每一个格子里有不同数量的食物,老鼠从(0,0)開始走.每次下一步仅仅能走到比当前格子食物多的格子.有水平和垂直四个方向,每一步最多走k格,求老鼠能吃到的最多的食物. 分析: ...
- [题解](树形dp/记忆化搜索)luogu_P1040_加分二叉树
树形dp/记忆化搜索 首先可以看出树形dp,因为第一个问题并不需要知道子树的样子, 然而第二个输出前序遍历,必须知道每个子树的根节点,需要在树形dp过程中记录,递归输出 那么如何求最大加分树——根据中 ...
- poj1664 dp记忆化搜索
http://poj.org/problem?id=1664 Description 把M个相同的苹果放在N个相同的盘子里,同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5.1.1和1 ...
- 状压DP+记忆化搜索 UVA 1252 Twenty Questions
题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...
- ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索
ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...
- POJ 1088 DP=记忆化搜索
话说DP=记忆化搜索这句话真不是虚的. 面对这道题目,题意很简单,但是DP的时候,方向分为四个,这个时候用递推就好难写了,你很难得到当前状态的前一个真实状态,这个时候记忆化搜索就派上用场啦! 通过对四 ...
- HDU 4597 Play Game (记忆化搜索博弈DP)
题意 给出2*n个数,分两列放置,每列n个,现在alice和bob两个人依次从任意一列的对头或队尾哪一个数,alice先拿,且两个人都想拿最多,问alice最后能拿到数字总和的最大值是多少. 思路 4 ...
- HDU 1078 FatMouse and Cheese 记忆化搜索DP
直接爆搜肯定超时,除非你加了某种凡人不能想出来的剪枝...555 因为老鼠的路径上的点满足是递增的,所以满足一定的拓补关系,可以利用动态规划求解 但是复杂的拓补关系无法简单的用循环实现,所以直接采取记 ...
随机推荐
- UVa 699 The Falling Leaves
题意:给出按先序输入的一颗二叉树,分别求出从左到右的相同横坐标上的节点的权值之和 递归建树,然后用sum数组分别统计每一个横坐标上的权值之和 感觉建树都在递归递归递归= =慢慢理解吧 #include ...
- HDU 5313 Bipartite Graph (二分图着色,dp)
题意: Soda有一个n个点m条边的二分图, 他想要通过加边使得这张图变成一个边数最多的完全二分图. 于是他想要知道他最多能够新加多少条边. 注意重边是不允许的. 思路: 先将二分图着色,将每个连通分 ...
- 函数与关系实例,函数运算与SQL,试验与关系元组
函数是一个集合,它的每个元素都是二元组或多元组.例如 f = { (x, y) | x∈R & y∈R & y = 2x } ,g = { (x, y, z) | (x, y, z)∈ ...
- 最好最实用的PHP二次开发教程
◆二次开发 1.什么是二次开发? 二次开发,简单的说就是在现有的软件上进行定制修改,功能的扩展,然后达到自己想要的功能和效果,一般来说都不会改变原有系统的内核. 2.为什么要二次开发? 随着信息化技术 ...
- ecshop 二次开发及模板标签
ecs_account_log // 用户账目日志表 ecs_activity // 活动表(代码,名称,开始,结束,描述) ecs_ad // 广告表(位置,类型,名称,链接,图片,开始,结 ...
- java解析XML四种方法
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML. XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便 ...
- Storm实战常见问题及解决方案
该文档为实实在在的原创文档,转载请注明: http://blog.sina.com.cn/s/blog_8c243ea30101k0k1.html 类型 详细 备注 该文档是群里几个朋友在storm实 ...
- iOS已发布应用中对异常信息捕获和处理
iOS已发布应用中对异常信息捕获和处理 iOS开发中我们会遇到程序抛出异常退出的情况,如果是在调试的过程中,异常的信息是一目了然,但是如果是在已经发布的程序中,获取异常的信息有时候是比较困难的. iO ...
- 【剑指offer 面试题17】合并两个排序的链表
思路: 比较两个链表端点值的大小,通过递归的方式排列. #include <iostream> using namespace std; struct ListNode { int val ...
- 如何解决Rally模板提示angular js加载错误
[前言] Rally是一个开源测试工具,用于测试openstack各个组件的性能 在使用Rally测试完毕后,一般会生成测试报告,这点很重要.但是原生态的Rally报告模板angular js框架是从 ...