@维基百科

在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的。

第一类

s(4,2)=11

第一类Stirling数是有正负的,其绝对值是个元素的项目分作个环排列的方法数目。常用的表示方法有

换个较生活化的说法,就是有个人分成组,每组内再按特定顺序围圈的分组方法的数目。例如

  1. {A,B},{C,D}
  2. {A,C},{B,D}
  3. {A,D},{B,C}
  4. {A},{B,C,D}
  5. {A},{B,D,C}
  6. {B},{A,C,D}
  7. {B},{A,D,C}
  8. {C},{A,B,D}
  9. {C},{A,D,B}
  10. {D},{A,B,C}
  11. {D},{A,C,B}

这可以用有向图来表示。

  • 给定,有递归关系

递推关系的说明:考虑第n+1个物品,n+1可以单独构成一个非空循环排列,这样前n种物品构成k-1个非空循环排列,方法数为s(n,k-1);也可以前n种物品构成k个非空循环排列,而第n+1个物品插入第i个物品的左边,这有n*s(n,k)种方法。

调和数的推广。

是递降阶乘多项式的系数:

第二类

第二类Stirling数是个元素的集定义k个等价类的方法数目。常用的表示方法有

换个较生活化的说法,就是有个人分成组的分组方法的数目。例如有甲、乙、丙、丁四人,若所有人分成1组,只有所有人在同一组这个方法,因此;若所有人分成4组,只可以人人独立一组,因此;若分成2组,可以是甲乙一组、丙丁一组,或甲丙一组、乙丁一组,或甲丁一组、乙丙一组,或其中三人同一组另一人独立一组,即是:

  1. {A,B},{C,D}
  2. {A,C},{B,D}
  3. {A,D},{B,C}
  4. {A},{B,C,D}
  5. {B},{A,C,D}
  6. {C},{A,B,D}
  7. {D},{A,B,C}

因此

  • 给定,有递归关系
  • 递推关系的说明:考虑第n个物品,n可以单独构成一个非空集合,此时前n-1个物品构成k-1个非空的不可辨别的集合, 方法数为S(n-1,k-1);也可以前n-1种物品构成k个非空的不可辨别的 集合,第n个物品放入任意一个中,这样有k*S(n-1,k)种方法。

是二项式系数,B_n是贝尔数

两者关系

克罗内克尔δ

斯特灵数 (Stirling数)的更多相关文章

  1. 斯特灵(Stirling)数

    http://zh.wikipedia.org/wiki/%E6%96%AF%E7%89%B9%E7%81%B5%E6%95%B0 第一类:n个元素分成k个非空循环排列(环)的方法总数 递推式:s(n ...

  2. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  3. cf932E. Team Work(第二类斯特灵数 组合数)

    题意 题目链接 Sol 这篇题解写的非常详细 首先要知道第二类斯特灵数的一个性质 \[m^n = \sum_{i = 0}^m C_{n}^i S(n, i) i!\] 证明可以考虑组合意义:\(m^ ...

  4. HDU4372-Count the Buildings【第一类Stirling数】+【组合数】

    <题目链接> <转载于 >>> > 题目大意: N座高楼,高度均不同且为1~N中的数,从前向后看能看到F个,从后向前看能看到B个,问有多少种可能的排列数. 0 ...

  5. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  6. hdu 4372 第一类stirling数的应用/。。。好题

    /** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...

  7. HDU 3625 Examining the Rooms:第一类stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...

  8. HDU 4372 Count the Buildings:第一类Stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看 ...

  9. 整理一点与排列组合有关的问题[组合数 Stirling数 Catalan数]

    都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有 ...

随机推荐

  1. VirtualBox虚拟机剪贴板共享

    默认VirtualBox的虚拟机和主机的剪贴板和拖拽不会共享的,因此需要我们进行处理. 一般情况下,我们选中虚拟机,然后设置剪贴板和拖拽为双向就ok了,但是我这里并没有好,设置如下图: 当我设置上面的 ...

  2. tornado中使用torndb,连接数过高的问题

    问题背景 最近新的产品开发中,使用了到了Tornado和mysql数据库.但在基本框架完成之后,我在开发时候发现了一个很奇怪的现象,我在测试时,发现数据库返回不了结果,于是我在mysql中输入show ...

  3. 宏HASH_GET_NEXT

    /*******************************************************************//** Gets the next struct in a h ...

  4. MSSQL大全

    一.基础 1.说明:创建数据库CREATE DATABASE database-name 2.说明:删除数据库drop database dbname3.说明:备份sql server--- 创建 备 ...

  5. LA 3295 (计数 容斥原理) Counting Triangles

    如果用容斥原理递推的办法,这道题确实和LA 3720 Highway很像. 看到大神们写的博客,什么乱搞啊,随便统计一下,这真的让小白很为难,于是我决定用比较严格的语言来写这篇题解. 整体思路很简单: ...

  6. web页面性能测试

    做Web开发,难免要对自己开发的页面进行性能检测,自己写工具检测,工作量太大.网上有几款比较成熟的检测工具,以下就介绍一下,与大家分享. 互联网现有工具 基于网页分析工具: 1.       阿里测 ...

  7. noip2000提高组题解

    事实再次向我证明了RP的重要性... 第一题:进制转换 是我最没有把握AC的一道题目却是我唯一一道AC的题目,真是讽刺.看完题目几乎完全没有往正常的解法(取余倒序)去想,直接写了搜索,因为数据范围在2 ...

  8. Android 如何直播RTMP流

    在android上,视频/音频流直播是极少有人关注的一部分.每当我们讨论流媒体,RTMP(Real Time Messaging Protocol)是不可或缺的.RTMP是一个基本的视频/音频直播流协 ...

  9. 警惕javascript代码中的“</script>”!

    之前在写<博客园自定义博客侧边栏公告的过滤漏洞>的时候遇到了一个javascript代码报错“语法错误”的问题,一直不得以解决,感谢Arliang发现了并为我进行了耐心的解释,现整理如下: ...

  10. D3D11_USAGE使用

    MSDN文档链接:http://msdn.microsoft.com/en-us/library/windows/desktop/ff476259(v=vs.85).aspx 不得不同吐槽一点的是,你 ...