版权声明:本文为原创文章,未经允许不得转载。
复习内容:
Spark中Job的提交 http://www.cnblogs.com/yourarebest/p/5342404.html

1.Spark中Job如何划分为Stage

我们在复习内容中介绍了Spark中Job的提交,下面我们看如何将Job划分为Stage。
对于JobSubmitted事件类型,通过 dagScheduler的handleJobSubmitted方法处理,方法源码如下:

private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
//根据jobId生成新的Stage,详见1
finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
...
Stage的提交及TaskSet(tasks)的提交
...
}

1.newResultStage方法如下, 根据jobId生成一个ResultStage

private def newResultStage(
rdd: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
jobId: Int,
callSite: CallSite): ResultStage = {
//根据jobid和rdd得到父Stages和StageId,详见2
val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, jobId)
//根据父Stages和StageId生成ResultStage,详见4
val stage = new ResultStage(id, rdd, func, partitions, parentStages, jobId, callSite)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(jobId, stage)
stage
}

2.getParentStagesAndId方法如下所示:

private def getParentStagesAndId(rdd: RDD[_], firstJobId: Int): (List[Stage], Int) = {
val parentStages = getParentStages(rdd, firstJobId),详见3
val id = nextStageId.getAndIncrement()
(parentStages, id)
}

3.getParentStages方法如下所示:

private def getParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
val parents = new HashSet[Stage]
val visited = new HashSet[RDD[_]]
//将要遍历的RDD放到栈Stack中
val waitingForVisit = new Stack[RDD[_]]
def visit(r: RDD[_]) {
if (!visited(r)) {
visited += r
for (dep <- r.dependencies) {
dep match {
//判断rdd的依赖关系,如果是ShuffleDependency说明是宽依赖,详见4
case shufDep: ShuffleDependency[, , _] =>
parents += getShuffleMapStage(shufDep, firstJobId)
//是窄依赖
case _ =>
//遍历rdd的父RDD是否有父Stage存在
waitingForVisit.push(dep.rdd)
} } } }
waitingForVisit.push(rdd)
while (waitingForVisit.nonEmpty) {
//调用visit方法访问出栈的RDD
visit(waitingForVisit.pop())
}
parents.toList
}

4.getShuffleMapStage方法如下所示:

private def getShuffleMapStage(
shuffleDep: ShuffleDependency[, , _],
firstJobId: Int): ShuffleMapStage = {
shuffleToMapStage.get(shuffleDep.shuffleId) match {
case Some(stage) => stage
case None =>
// We are going to register ancestor shuffle dependencies,详见5
getAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
//根据firstJobId生成ShuffleMapStage,详见6
shuffleToMapStage(dep.shuffleId) = newOrUsedShuffleStage(dep, firstJobId)
}
// Then register current shuffleDep
val stage = newOrUsedShuffleStage(shuffleDep, firstJobId)
shuffleToMapStage(shuffleDep.shuffleId) = stage
stage
}
}

5.getAncestorShuffleDependencies方法如下:

private def getAncestorShuffleDependencies(rdd: RDD[_]): Stack[ShuffleDependency[, , _]] = {
val parents = new Stack[ShuffleDependency[, , _]]
val visited = new HashSet[RDD[_]]
val waitingForVisit = new Stack[RDD[_]]
def visit(r: RDD[_]) {
if (!visited(r)) {
visited += r
for (dep <- r.dependencies) {
dep match {
case shufDep: ShuffleDependency[, , _] =>
if (!shuffleToMapStage.contains(shufDep.shuffleId)) {
parents.push(shufDep)
}
case _ =>
}
waitingForVisit.push(dep.rdd)
}
}
}
waitingForVisit.push(rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
parents
}

6.newOrUsedShuffleStage方法如下所示,根据给定的RDD生成ShuffleMapStage,如果shuffleId对应的Stage已经存在与MapOutputTracker,那么number和位置输出的位置信息都可以从MapOutputTracker找到

private def newOrUsedShuffleStage(
shuffleDep: ShuffleDependency[, , _],
firstJobId: Int): ShuffleMapStage = {
val rdd = shuffleDep.rdd
val numTasks = rdd.partitions.length
val stage = newShuffleMapStage(rdd, numTasks, shuffleDep, firstJobId, rdd.creationSite)
if (mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {
val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId)
val locs = MapOutputTracker.deserializeMapStatuses(serLocs)
for (i <- 0 until locs.length) {
stage.outputLocs(i) = Option(locs(i)).toList // locs(i) will be null if missing
}
stage.numAvailableOutputs = locs.count(_ != null)
} else {
// Kind of ugly: need to register RDDs with the cache and map output tracker here
// since we can't do it in the RDD constructor because # of partitions is unknown
logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")
mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
}
stage
}

2.Stage描述

一个Stage是一组并行的tasks;一个Stage可以被多个Job共享;一些Stage可能没有运行所有的RDD的分区,比如first 和 lookup;Stage的划分是通过是否存在Shuffle为边界来划分的,Stage的子类有两个:ResultStage和ShuffleMapStage
对于窄依赖生成的是ResultStage,对于宽依赖生成的是ShuffleMapStage。当ShuffleMapStages执行完后,产生输出文件,等待reduce task去获取,同时,ShffleMapStages也可以通过DAGScheduler的submitMapStage方法独立作为job被提交

stage划分示意图

下一篇我们看Stage如何提交的。

【原】Spark中Job如何划分为Stage的更多相关文章

  1. 【Spark篇】--Spark中的宽窄依赖和Stage的划分

    一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD parti ...

  2. 【原】Spark中Stage的提交源码解读

    版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job如何划分为Stage http://www.cnblogs.com/yourarebest/p/5342424.html 1 ...

  3. spark 中划分stage的思路

    窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 宽依赖指子RDD的每个分区都要依赖于父RD ...

  4. 【原】 Spark中Task的提交源码解读

    版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Stage的提交 http://www.cnblogs.com/yourarebest/p/5356769.html Spark中 ...

  5. 【原】Spark中Job的提交源码解读

    版权声明:本文为原创文章,未经允许不得转载. Spark程序程序job的运行是通过actions算子触发的,每一个action算子其实是一个runJob方法的运行,详见文章 SparkContex源码 ...

  6. 【原】Spark中Master源码分析(二)

    继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法, ...

  7. 【原】 Spark中Worker源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, r ...

  8. Spark中Task,Partition,RDD、节点数、Executor数、core数目的关系和Application,Driver,Job,Task,Stage理解

    梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core数目的关系. 输入可能以多个文件的形式存储在H ...

  9. 【原】Spark中Client源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的 ...

随机推荐

  1. WCF学习笔记(基于REST规则方式)

    一.WCF的定义 WCF是.NET 3.0后开始引入的新技术,意为基于windows平台的通讯服务. 首先在学习WCF之前,我们也知道他其实是加强版的一个面向服务(SOA)的框架技术. 如果熟悉Web ...

  2. C#线程总结

    using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...

  3. LAMP虚拟主机配置以及控制目录访问

    3.基于域名的虚拟主机配置 NameVirtualHost192.168.3.32:80#apache2.2.xx版本需要开启此选项,而且要和下面的保持一致:2.4.x版本就不需要此项设置了 < ...

  4. 软件测试 -- alpha测试和beta测试的区别

    alpha测试是在用户组织模拟软件系统的运行环境下的一种验收测试,由用户或第三方测试公司进行的测试,模拟各类用户行为对即将面市的软件产品进行测试,试图发现并修改错误. Beta测试是用户公司组织各方面 ...

  5. 创建第一个UI

    创建一个2D UI 制作UI时,首先要创建UI的"根".在Unity顶部NGUI菜单中选择Create,然后选择2D UI. 创建完成后,在Scene窗口中,NGUI自动生成了一个 ...

  6. struts2用了哪几种模式

    代理模式 责任连模式 ActionVacation 迭代模式

  7. <三> jQuery 选择器

    jQuery 选择器选择需要应用效果的元素,jQuery 元素选择器和属性选择器允许您通过标签名.属性名或内容对 HTML 元素进行选择.选择器允许您对 HTML 元素组或单个元素进行操作. 元素选择 ...

  8. python 读写文本文件

    本人最近新学python ,用到文本文件的读取,经过一番研究,从网上查找资料,经过测试,总结了一下读取文本文件的方法. 1.在读取文本文件的时无非有两种方法: a.f=open('filename', ...

  9. 转 JavaScript 操作select控件大全(新增、修改、删除、选中、清空、判断存在等)

    收藏一下 1.判断select选项中 是否存在Value=”paraValue”的Item2.向select选项中 加入一个Item3.从select选项中 删除一个Item4.删除select中选中 ...

  10. 精确到秒的JQuery日期控件

    项目中需要用到精确到秒的日期控件,到网上搜了一下,发现有一个JQuery控件可以实现该功能---TimerPicker.但是官网上没有提供该控件的完整Demo,而且没有提供汉化包,所以自己汉化了一下, ...