我们首先可以得到:如果有一堆盘子里有一些相邻的盘子的直径相等,那么自然这些盘子可以统一处理,就可以缩成一个了。

然后我们接着考虑给每一堆盘子都染上一种颜色,那么操作的次数 step = diff * 2 - n + 1

其中 diff 表示最终的盘子堆中相邻的盘子的颜色不同的对数。

接着我们可以将盘子的直径离散化。

那么我们可以考虑Dp,设 Dp[s][i] 为处理完所有盘子直径小于等于 s 的盘子,并且最底下的盘子的颜色是 i 的 diff 的最小值。

至于转移的话呢,记直径为 s 的盘子个数为 tot[s],然后找到所有直径为 s 的盘子及其颜色 i ,那么就有:

  • res1 = min(Dp[s - 1][j] + tot[s]) (j = 1 ~ n)
  • res2 = min(Dp[s - 1][k] + tot[s] - 1) (存在一个直径为 s,颜色为 k 的盘子)
  • Dp[s][i] = min(res1, res2)

初始化 Dp[0][i] = 0 (i = 1 ~ n)

答案 ans = min(Dp[Max_s][i]) * 2 - n + 1

于是就做完啦~

毕竟 Gromah 太弱,只会做水题。

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define N 50 + 5
#define M 2500 + 5
#define SIZE 10000 + 5
#define INF 593119681 int _, n;
int A[N][N];
int Size[N], Point[N], T[N];
int Dp[][N];
int S[SIZE]; inline void Init()
{
memset(S, , sizeof(S));
for (int i = ; i <= n; i ++)
{
scanf("%d", Size + i);
for (int j = ; j <= Size[i]; j ++)
{
scanf("%d", A[i] + j);
S[A[i][j]] = ;
}
Size[i] = unique(A[i] + , A[i] + Size[i] + ) - A[i] - ;
Point[i] = ;
}
for (int i = ; i < SIZE; i ++)
S[i] += S[i - ];
for (int i = ; i <= n; i ++)
for (int j = ; j <= Size[i]; j ++)
A[i][j] = S[A[i][j]];
} inline void Solve()
{
printf("Case %d: ", ++ _);
for (int i = ; i <= n; i ++)
Dp[][i] = ;
for (int i = ; i <= S[SIZE - ]; i ++)
{
T[] = ;
Dp[][] = INF;
for (int j = ; j <= n; j ++)
{
if (A[j][Point[j]] == i)
T[++ T[]] = j, Point[j] ++;
Dp[][j] = INF;
}
for (int j = ; j <= T[]; j ++)
{
for (int k = ; k <= T[]; k ++)
{
if (j == k && T[] > ) continue ;
Dp[][T[k]] = min(Dp[][T[k]], Dp[][T[j]] + T[] - );
}
for (int k = ; k <= n; k ++)
Dp[][T[j]] = min(Dp[][T[j]], Dp[][k] + T[]);
}
for (int j = ; j <= n; j ++)
Dp[][j] = Dp[][j];
}
int Min = INF;
for (int i = ; i <= n; i ++)
Min = min(Min, Dp[][i]);
printf("%d\n", Min * - n + );
} int main()
{
#ifndef ONLINE_JUDGE
freopen("3982.in", "r", stdin);
freopen("3982.out", "w", stdout);
#endif while (scanf("%d", &n) == )
{
Init();
Solve();
} #ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return ;
}

BZOJ 3982 Stacking Plates 解题报告的更多相关文章

  1. BZOJ 4619 Swap Space 解题报告

    今天是因为David Lee正好讲这个题的类似题,我才做了一下. 本题是world final 2016的一道水…… 题目地址如下 http://www.lydsy.com/JudgeOnline/p ...

  2. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  3. BZOJ 1367 [Baltic2004]sequence 解题报告

    BZOJ 1367 [Baltic2004]sequence Description 给定一个序列\(t_1,t_2,\dots,t_N\),求一个递增序列\(z_1<z_2<\dots& ...

  4. BZOJ 1044 木棍分割 解题报告(二分+DP)

    来到机房刷了一道水(bian’tai)题.题目思想非常简单易懂(我的做法实际上参考了Evensgn 范学长,在此多谢范学长了) 题目摆上: 1044: [HAOI2008]木棍分割 Time Limi ...

  5. BZOJ 4341 [CF253 Printer] 解题报告

    乍一看这个题好像可以二分优先度搞搞... 实际上能不能这么搞呢...? 我反正不会... 于是开始讲我的乱搞算法: 首先肯定要把任务按照优先度排序. 用一棵在线建点的线段树维护一个时刻是否在工作. 然 ...

  6. BZOJ 4036 [HAOI2015] Set 解题报告

    首先我们不能一位一位的考虑,为什么呢? 你想想,你如果一位一位地考虑的话,那么最后就只有 $n$ 个数字,然而他给了你 $2^n$ 个数字,怎么看都不对劲呀.(我是因为这样子弄没过样例才明白的) 所以 ...

  7. BZOJ 3288 Mato矩阵 解题报告

    这个题好神呀..Orz taorunz 有一个结论,这个结论感觉很优美: $$ans = \prod_{i=1}^{n}\varphi(i)$$ 至于为什么呢,大概是这样子的: 对于每个数字 $x$, ...

  8. BZOJ 4123 [Baltic2015] Hacker 解题报告

    首先,Alice 会选择一个长度为 $\lfloor\frac{n+1}{2}\rfloor$ 的区间,我们把这个长度记为 $len$. 有这么一个结论:令 $F_i$ 为覆盖 $i$ 点的所有长度为 ...

  9. BZOJ 4146 [AMPPZ2014] Divisors 解题报告

    这个题感觉比较小清新... 我们记录每个数出现的次数 $T_i$. 首先依次枚举每个数字,令 $ans = ans + T_i \times (T_i - 1)$,然后枚举这个数的倍数,令 $ans ...

随机推荐

  1. Pyhont 网络编程【第一篇】初始Socket网络套接字

    一.什么是socket: Socket 别名 “网络套接字”,指网络通信链句柄 其实就是一堆网络信息(ip+端口) 建立起的链接称之为socket,Socket的英文原义是“孔”或“插座”,用来实现不 ...

  2. cgi表单的处理

    在HTML中,当客户填写了表单,并按下了发送(submit)按钮后,表单的内容被发送 到了服务器端,一般的,这时就需要有一个服务器端脚本来对表单的内容进行一些处理, 或者是把它们保存起来,或者是按内容 ...

  3. (译文)12个简单(但强大)的JavaScript技巧(一)

    原文连接: 12 Simple (Yet Powerful) JavaScript Tips 我将会介绍和解析12个简单但是强大的JavaScript技巧. 这些技巧所有的JavaScript程序员都 ...

  4. 2015年校园招聘12家IT公司面试体验

    背景 2015年注定是一个不平凡的年头,作为一个应届毕业生,我也算是经历了工作上的大起大落.下面我先简单讲述一下自己的遭遇,然后根据自己亲身的面试经历,从一个学生的角度去谈谈自己对面试过的公司的一些看 ...

  5. 基于spark实现表的join操作

    1. 自连接 假设存在如下文件: [root@bluejoe0 ~]# cat categories.csv 1,生活用品,0 2,数码用品,1 3,手机,2 4,华为Mate7,3 每一行的格式为: ...

  6. 将系统日期转化为sharepoint日期

    string currentDate = SPUtility.CreateISO8601DateTimeFromSystemDateTime(DateTime.Now.Date);

  7. System.Web.Mvc.Html 命名空间小计(转)

    最近在看MVC框架,发现这个博文对初学者可能有帮助,故转之. 1,Html.Action    使用指定参数调用指定子操作方法并以 HTML 字符串形式返回结果. Html.Action() < ...

  8. 访问图像中的像素[OpenCV 笔记16]

    再更一发好久没更过的OpenCV,不过其实写到这个部分对计算机视觉算法有所了解的应该可以做到用什么查什么了,所以后面可能会更的慢一点吧,既然开了新坑,还是机器学习更有研究价值吧... 图像在内存中的存 ...

  9. vmware以及schlumberger题解

    先是vmare的:具体的题目我就不描述了. 1. 贪吃的小明.直接数个数,统计个数,就可以完成.使用map,应该输入implement这一类,我认为很简单,但是我只过了33%. /* ID: y119 ...

  10. makefile--#的不正确使用

    /usr/vacpp/bin/makeC++SharedLib -o /cicm/src/dao/testcase/rel/FUNCTEST.ibmcpp -brtl -bnortllib -p100 ...