Main idear

Treat the tracking problem as a classification task and use online learning techniques to update the object model



Main Innovative Points

1 Based on structured output prediction (Structured SVM), in which the task is directly predict the change in object location between frames, instead of relying on a heuristic intermediate step for producting
labelled binary samples with which to update the classifier, which is often a source of error during tracking


2 The online structured output SVM  learning framework is also easy to incorporate image features and kernels, and SVM also has good generalization ability,robustness to label noise and flexibility in object representation
through the use of kernels

3 不是採用离目标近的为正样本,远的为负样本这样的准側,而是採用overlap。大于一定值的为正,小于为负

4 核函数

5 对支持向量进行限制,将权重影响小的去掉

 
The issues raised by other tracking-by-detection approach

1 the classification confidence function provides an accurate estimate of object position is not explicitly incorporated into the learning algorithm, since the classifier is trained only with
binary labels and has no information about transformations

2 Examples used for training the classifier are all equally weighted, meaning that a negative example which overlaps significantly with the tracker bounding box is treated the same as one which
overlaps very little. One implication of this is that slight inaccuracy during tracking can lead to poorly labelled examples, which are likely to reduce the accuracy of the classifier, in turn leading to further tracking inaccuracy

3  the labeller is usually chosen based on intuitions and heuristics, rather than having a tight coupling with the classifier. Mistakes made by the labeller manifest themselves as label noise,
and many current state-of-the-art approaches try to overcome this problem by using robust loss functions [13, 14], semi-supervised learning [11, 17], or multiple-instance learning [3, 23]. We argue that all of these techniques, though justified in increasing the
robustness of the classifier to label noise, are not addressing the real problem which stems from separating the labeller from the learner





How To Do

1 总览
算法分为两步:1 预估物体的位移  2 更新判别函数

Structure Learning是一种同意输出为结构的学习方法。理论上不论什么输出都能够作为一种结构。即能够解决随意问题
Structure SVM 是结构学习的一种,已是一种比較成熟的算法实现框架,论文參考參考附件部分1,2,3 ,代码网址

2 建立 Structure SVM 模型
文中的模型为:
当中的约束条件是从>=0进化来的
1 >=0时w的解不唯一。所以我们选择是间隔最大的w并限制w的长度,——> >=1 
2 松弛>=1-
3 将1换为损失函数,越不同,间隔要求越严格(大)

3 解这个SVM模型

A
核心步骤基于SMO(序列最小最优化)Style的,SMO的基本思路是:选择两个变量(至少一个违反KKT)。固定其它变量,进行两个变量的二次规划问题求解,这样将问题不断的分解为子问题进行求解,进而达到求解原问题的目标。SMO參考4,5


B
文中还引入了Budget来对支持向量的个数进行约束。进而能够达到实时方法为:
Similar to [21], we choose to remove the support vector which results in the smallest change to the weight vector w, as measured by ||w||2


Search over Y on a polar grid rather than considering every pixel offset.



实验

1 採用的2个尺度的4X4的6种不同的haar-like(192 features)
2 Combine some different features by averaging multiple kernels




參考附件

1 Large Margin Method for Structured Learning
2 Support Vector Machine Learning for Interdependent and Structured Output Spaces 1的简短版
3 Structured Learning and Prediction in Computer Vision
4 统计学习方法-李航 7.4
5 Sequential minimal optimization: A fast algorithm for training support vector machines
















Struck: Structrued Output Tracking with Kernels 论文笔记的更多相关文章

  1. Struck: Structured Output Tracking with Kernels

    reference: Struck: Structured Output Tracking with Kernels hot topic: tracking-by-detection methods, ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. 目标跟踪学习系列十:Struck:Structured Output Tracking with Kernels 代码调试

    本来想看完代码再具体的写的.可是有人问了就先贴出来吧! 代码调试中会遇到的一些的问题. 首先,你没有代码的话能够在这里下载:http://download.csdn.net/detail/u01219 ...

  4. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  5. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  6. 论文笔记:目标追踪-CVPR2014-Adaptive Color Attributes for Real-time Visual Tracking

    基于自适应颜色属性的目标追踪 Adaptive Color Attributes for Real-Time Visual Tracking 基于自适应颜色属性的实时视觉追踪 3月讲的第一篇论文,个人 ...

  7. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  8. 论文笔记: Dual Deep Network for Visual Tracking

    论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...

  9. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

随机推荐

  1. caffe之(三)激活函数层

    在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层.卷积操作层.pooling层.非线性变换层.内积运算层.归一化层.损失计算层等:本篇主要 ...

  2. OpenTSDB案例总结

    加宽行可增加扫描速度 采用组合rowkey,利用数据本地性加快扫描 少数宽行,并不比多数窄行节省空间 缩短Column family 和 column的名字 合并若干列.

  3. JQuery replace 替换全部

    天在做写个程序时遇到需要替换的功能,可是一开始用jquery的replace时,发现只替换到第一个.最后没办法,只好用正则表达式来例如下面   re = new RegExp("{thisc ...

  4. Codeforces Round #197 (Div. 2) : E

    看了codeforces上的大神写的题解之后,才知道这道题水的根本! 不过相对前面两题来说,这道题的思维要难一点: 不过想到了水的根本,这题也真心不难: 方法嘛,就像剥洋葱一样,从外面往里面剥: 所以 ...

  5. linux下使用NFS挂载文件系统

    转自linux如何使用NFS挂载文件系统 设备:一台服务器和一台客户端,这里我们把装在PC机上的RedHat作为服务器,而客户端则是嵌入式linux开发板. 环境:开发板已启动,连接好串口和网线,串口 ...

  6. SPRING IN ACTION 第4版笔记-第二章WIRING BEANS-006-当构造函数有集合时的注入

    一.当构造函数有集合时,只能用<CONSTRUCTOR-ARG>,不能用C-NAMESPACE 二. 1. package soundsystem.collections; import ...

  7. pay lip service to

    Understanding Progressive Enhancement中看到了这句话: Concerned with content availability, overall accessibi ...

  8. 【HDOJ】3033 I love sneakers!

    分组背包. #include <stdio.h> #include <string.h> #define mymax(a, b) (a>b) ? a:b typedef ...

  9. BZOJ_1208_&_Codevs_1258_[HNOI2004]_宠物收养所_(平衡树/set)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1208 (据说codevs要更新?就不放codevs的地址了吧...) 有宠物和人,每个单位都有 ...

  10. BZOJ_1565_[NOI2009]_植物大战僵尸_(Tarjan+最大流+最大权闭合图)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1565 n*m的矩阵,可以种植植物,僵尸从图的右边进入吃植物.前面的植物可以保护后面的植物,还有 ...