http://poj.org/problem?id=3159

题意:

flymouse是幼稚园班上的班长,一天老师给小朋友们买了一堆的糖果,由flymouse来分发,在班上,
flymouse和snoopy是死对头,两人势如水火,不能相容,因此fly希望自己分得的糖果数尽量多于
snoopy,而对于其他小朋友而言,则只希望自己得到的糖果不少于班上某某其他人就行了。

比如A小朋友强烈希望自己的糖果数不能少于B小朋友m个,即B- A<=m,A,B分别为
A、B小朋友的分得的糖果数。这样给出若干组这样的条件,要使fly最后分得的糖果数s1和snoopy
最后分得的糖果数s2差别取到最大!即s2-s1取最大.

思路:求源点1到n的最短距离。Dijstra+邻接表

不过直接用dij会超时。可以用优先队列优化一下。不过运算符重载那里被卡了好久。悲惨的教训啊。

 #include<stdio.h>
#include<string.h>
#include<queue>
using namespace std; const int INF = 0x3f3f3f3f;
const int maxv = ;
const int maxe = ;
struct node
{
int v,w,next;
}edge[maxe];//邻接表 struct node1
{
int v,c;
bool operator < (const node1 &t) const
{
return c > t.c;//距离从小到大排序
}
};//存每个节点和它到源点的最短距离。 int n,m,cnt;
int p[maxe];
int dis[maxv];
int vis[maxv];
void add(int u, int v, int w)
{
cnt++;
edge[cnt].v = v;
edge[cnt].w = w;
edge[cnt].next = p[u];
p[u] = cnt;
} void dijstra(int s)
{
priority_queue<struct node1> que;
for(int i = ; i <= n; i++)
dis[i] = INF;
memset(vis,,sizeof(vis)); dis[s] = ;
que.push((struct node1){s,dis[s]});
for(int i = ; i < n; i++)
{
while(!que.empty() && vis[que.top().v])
que.pop();
if(que.empty()) break; node1 tmp = que.top();
que.pop();
vis[tmp.v] = ;
for(int j = p[tmp.v]; j; j = edge[j].next)
{
if((dis[edge[j].v] > dis[tmp.v] + edge[j].w) && !vis[edge[j].v])
{
dis[edge[j].v] = dis[tmp.v] + edge[j].w;
que.push((struct node1){edge[j].v,dis[edge[j].v]});
}
}
}
} int main()
{
while(~scanf("%d %d",&n,&m))
{
int u,v,w;
memset(p,,sizeof(p));
cnt = ;
for(int i = ; i < m; i++)
{
scanf("%d %d %d",&u,&v,&w);
add(u,v,w);
}
dijstra();
printf("%d\n",dis[n]); }
return ;
}

看discuss里面也可以用SPFA+stack,可能用stack效率高一点吧。

 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
using namespace std; const int INF = 0x3f3f3f3f;
const int maxv = ;
const int maxe = ; struct node
{
int v,w;
int next;
}edge[maxe];
int n,m,cnt;
int p[maxe];
int dis[maxv],instack[maxv];
void add(int u, int v, int w)
{
cnt++;
edge[cnt].v = v;
edge[cnt].w = w;
edge[cnt].next = p[u];
p[u] = cnt;
} void SPFA(int s)
{
stack<int>st;
for(int i = ; i <= n; i++)
dis[i] = INF;
memset(instack,,sizeof(instack));
dis[s] = ;
st.push(s);
instack[s] = ;
while(!st.empty())
{
int u = st.top();
st.pop();
instack[u] = ; for(int i = p[u]; i; i = edge[i].next)
{
if(dis[edge[i].v] > dis[u] + edge[i].w)
{
dis[edge[i].v] = dis[u] + edge[i].w;
if(!instack[edge[i].v])
{
st.push(edge[i].v);
instack[edge[i].v] = ;
}
}
}
}
} int main()
{
while(~scanf("%d %d",&n,&m))
{
cnt = ;
memset(p,,sizeof(p));
int u,v,w;
for(int i = ; i < m; i++)
{
scanf("%d %d %d",&u,&v,&w);
add(u,v,w);
}
SPFA();
printf("%d\n",dis[n]);
}
return ;
}

Candies(差分约束)的更多相关文章

  1. poj3159 Candies(差分约束,dij+heap)

    poj3159 Candies 这题实质为裸的差分约束. 先看最短路模型:若d[v] >= d[u] + w, 则连边u->v,之后就变成了d[v] <= d[u] + w , 即d ...

  2. POJ-3159.Candies.(差分约束 + Spfa)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 40407   Accepted: 11367 Descri ...

  3. POJ 3159 Candies 差分约束dij

    分析:设每个人的糖果数量是a[i] 最终就是求a[n]-a[1]的最大值 然后给出m个关系 u,v,c 表示a[u]+c>=a[v] 就是a[v]-a[u]<=c 所以对于这种情况,按照u ...

  4. [poj 3159]Candies[差分约束详解][朴素的考虑法]

    题意 编号为 1..N 的人, 每人有一个数; 需要满足 dj - di <= c 求1号的数与N号的数的最大差值.(略坑: 1 一定要比 N 大的...difference...不是" ...

  5. [poj3159]Candies(差分约束+链式前向星dijkstra模板)

    题意:n个人,m个信息,每行的信息是3个数字,A,B,C,表示B比A多出来的糖果不超过C个,问你,n号人最多比1号人多几个糖果 解题关键:差分约束系统转化为最短路,B-A>=C,建有向边即可,与 ...

  6. poj 3159 Candies 差分约束

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 22177   Accepted: 5936 Descrip ...

  7. poj3159 Candies(差分约束)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Candies Time Limit: 1500MS   Memory Limit ...

  8. POJ3159 Candies —— 差分约束 spfa

    题目链接:http://poj.org/problem?id=3159 Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submiss ...

  9. POJ 3159 Candies(差分约束,最短路)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 20067   Accepted: 5293 Descrip ...

随机推荐

  1. CentOS7安装Puppet+GitLab+Bind

    添加Puppet官方源 rpm -Uvh https://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm 安装Puppet yum -y i ...

  2. C# addin 开发心得记录

    1.环境 2012 新建项目-2010外接程序 2.新建项-功能区  创建菜单等 发布: 1.InstallShield  2015 2.打包 说明按地址-https://msdn.microsoft ...

  3. 移动设备日期选择插件(基于JQUERY)

    上周花了2个小时写的一个日期选择插件,比较适合移动端的设备.先看个效果图吧.如果刚好是你需要的就往下吧,不需要的也可以继续..... 其实网络上已经有的了类似的成熟插件,比如基于mobiscroll, ...

  4. IPX/SPX

    转自百度百科 方便阅读 IPX/SPX   目 录 1英文原义 2中文释义 3IPX协议 3.1 说明 3.2 应用 4SPX协议 4.1 说明 4.2 应用     1英文原义 IPX/SPX 2中 ...

  5. Invalid segment BIN$xxx and dba_recyclebin was empty (回收站空,释放无效的BIN$xx空间)

    近来有套库空间紧张,发现有很大BIN$开头的TABLE partition,index partition 类型的段,查询确认是2个月前删除的对象,手动清空过dba_recyclebin使用purge ...

  6. html-----005

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. Java之final的解析

    在Java中,final关键字可以用来修饰类.方法和变量(包括成员变量和局部变量). 当用final修饰一个类时,表明这个类不能被继承. 对于一个final变量,如果是基本数据类型的变量,则其数值一旦 ...

  8. matlab结构体形式保存数据生成.mat文件< 转>

    2015年 参加天池大数据竞赛     为了建立模型,打算基于matlab使用Random Forest Algorithm的工具包 该工具包我在此分享给大家,http://yunpan.cn/cVX ...

  9. C++常量的引用 const

    如果是对一个常量进行引用,则编译器首先建立一个临时变量,然后将该常量的值置入临时变量中,对该引用的操作就是对该临时变量的操作.对C++常量引用可以用其它任何引用来初始化:但不能改变. 关于引用的初始化 ...

  10. Linux + C + Epoll实现高并发服务器(线程池 + 数据库连接池)(转)

    转自:http://blog.csdn.net/wuyuxing24/article/details/48758927 一, 背景 先说下我要实现的功能,server端一直在linux平台下面跑,当客 ...