题目大意

给定两个序列,要求你求出最长公共上升子序列

题解

LIS和LCS的合体,YY好久没YY出方程,看了网友的题解,主要是参考aikilis的,直接搬过来好了

经典的动态规划优化。

用opt[i][j]表示s[0..i-1]与t[0..j-1]的以t[j-1]结尾的最长上升公共子序列的长度,那么最后的答案是max{opt[n][j] | 1<=j<=m}。

当s[i-1]!=t[j-1]时,由于必须以t[j-1]收尾,所以不可能选择s[i-1],故有:

opt[i][j]=opt[i-1][j]。

当s[i-1]=t[j-1]时,与LIS一样,我们有:

opt[i][j]=1+max{opt[i-1][k] | k<j,t[k]<t[j]}。

如果直接求解这个状态转移方程,时间复杂度是O(n^3),我们需要进行优化,由于主要的时间消耗出现在s[i]=t[j]的情况下,所以我们对这种情况的求解进行优化。

我们按照i优先的顺序求解(外层循环为i),那么注意到在求解opt[i][j]时,主要的工作量是计算max{opt[i-1][k] | k<j,t[k]<t[j]},然而如果我们利用以前已经求解过的opt[][]的值,可以直接得到opt[i][j]=1+max{opt[i-1][k] | k<j,t[k]<t[j]}的值而不用枚举,假设在t[j]之前有一个t[p]满足t[p]=t[j] (p<j),那么我们在求解opt[i][p]的时候已经得到了max{opt[i-1][k] | k<p,t[k]<t[p]},所以在求解opt[i][j]时,对于k<p,我们不用再比较opt[i-1][k] |,他们的最大值就等于opt[i][p]-1,所以我们可以记录最大的p,然后在求解opt[i][j]时,只对大于p的k作比较,另一方面,如果对于t[p]与t[k]之间的t的元素,我们显然不需要考虑那些不小于t[j]的,又因为t[j]=s[i],所以实际上我们只需要取max{opt[i-1][k] | p<k<j,t[k]<s[i]}与opt[i][p]-1的最大值,鉴于此,我们得到如下的做法:

在每次内层循环(求解j)前,维护一个mx变量,它维护max{opt[i-1][k] | k<j,t[k]<t[j]=s[i]}的值,然后循环j,如果遇到t[j]<s[i],则更新mx=max{mx,opt[i-1][j],当出现t[j]=s[i]时,有opt[i][j]=mx+1。

这样时间复杂度降为O(n^2)。

刚开始的时候记录路径用了一维的,CF上AC了,不过POJWA了,后面改用二维,顺便学习了CF上大神的代码,用pair记录路径,这东西真是好东西,哈哈,又学到一个新东西~~~不过POJ上RE了,发现是有个变量忘记初始化了

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <utility>
using namespace std;
#define MAXN 505
int a[MAXN],b[MAXN];
int dp[MAXN][MAXN],m,n;
pair<int,int> pre[MAXN][MAXN];
void dfs(int i,int j)
{
if(!i||!j) return;
dfs(pre[i][j].first,pre[i][j].second);
if(a[i]==b[j]) printf("%d ",b[j]);
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for(int i=1;i<=m;i++)
scanf("%d",&b[i]);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
int p=0;
for(int j=1;j<=m;j++)
{
if(a[i]>b[j]&&dp[i-1][j]>dp[i-1][p]) p=j;
if(a[i]!=b[j])dp[i][j]=dp[i-1][j],pre[i][j]=make_pair(i-1,j);
else
dp[i][j]=dp[i-1][p]+1,pre[i][j]=make_pair(i-1,p);
}
}
int ans=0,index=0;
for(int i=1;i<=m;i++)
if(dp[n][i]>ans)
ans=dp[n][i],index=i;
printf("%d\n",ans);
dfs(n,index);
printf("\n");
}
return 0;
}

Codeforces10D–LCIS(区间DP)的更多相关文章

  1. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  2. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  3. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  4. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  5. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  6. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  7. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  8. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

  9. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

随机推荐

  1. hdu 4358 Boring counting 离散化+dfs序+莫队算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4358 题意:以1为根节点含有N(N <= 1e5)个结点的树,每个节点有一个权值(weight ...

  2. hdu 4570 Multi-bit Trie 区间DP入门

    Multi-bit Trie 题意:将长度为n(n <= 64)的序列分成若干段,每段的数字个数不超过20,且每段的内存定义为段首的值乘以2^(段的长度):问这段序列总的内存最小为多少? 思路: ...

  3. 初识Tower Defense Toolkit

    Tower Defense Toolkit 做塔防游戏的插件 主要层次如下图: 1GameControl _ _Game Control(Script) _ _ _Spawn Manager _ _ ...

  4. windows8.1专业中文版一个可用的密钥分享

    分享一个windows8.1专业中文版一个可用的密钥,亲测可用,联网输入密钥激活即可. PKHMN-TWQ6R-XDTH7-P4WW4-YR9T7

  5. [codility]Grocery-store

    http://codility.com/demo/take-sample-test/hydrogenium2013 用Dijkstra求最短路径,同时和D[i]比较判断是不是能到.用了优先队列优化,复 ...

  6. 坚持Delphi的厂商与产品

    能记一个算一个吧... 招商银行的企业网银是用Delphi开发的,听说招商有不少软件都是用Delphi开发的. 广州酷狗音乐招Delphi开发 对程序员来说,Delphi写的比较有名的软件莫过于Dev ...

  7. RxJava开发精要2-为什么是Observables?

    原文出自<RxJava Essentials> 原文作者 : Ivan Morgillo 译文出自 : 开发技术前线 www.devtf.cn 转载声明: 本译文已授权开发者头条享有独家转 ...

  8. 通过jQuery或ScriptManager以Ajax方式访问服务

    1.客户端和服务端 服务端对外提供服务时,可以通过handler或者webservice.handler比较轻便,但是难以对外公开,只有程序员自己知道它到底做了些什么工作.webservice可以将服 ...

  9. 【DataStructure In Python】Python模拟栈和队列

    用Python模拟栈和队列主要是利用List,当然也可以使用collection的deque.以下内容为栈: #! /usr/bin/env python # DataStructure Stack ...

  10. poj1691(dfs)

    链接 dfs了 写得有点乱 #include <iostream> #include<cstdio> #include<cstring> #include<a ...