潜语义分析(Latent Semantic Analysis)
LSI(Latent semantic indexing, 潜语义索引)和LSA(Latent semantic analysis,潜语义分析)这两个名字其实是一回事。我们这里称为LSA。
LSA源自问题:如何从搜索query中找到相关的文档?当我们试图通过比较词来找到相关的文本时,就很机械、存在一定的局限性。在搜索中,文档的相似性并不应该由两个文本包含的词直接决定,而是应该去比较隐藏在词之后的意义和概念。但传统向量空间模型使用精确的词匹配,即精确匹配用户输入的词与向量空间中存在的词。比如用户搜索“automobile”,即汽车,传统向量空间模型仅仅会返回包含“automobile”单词的页面,而实际上包含”car”单词的页面也可能是用户所需要的。潜语义分析试图去解决这个问题,它把词和文档都映射到一个潜在语义空间,文档的相似性在这个空间内进行比较。潜语义空间的维度个数可以自己指定,往往比传统向量空间维度更少,所以LSA也是一种降维技术。
LSA的整个过程如下:
1. 将文档集构造成Term-Document矩阵M,矩阵中的每个位置的值可以是该行代表个词在该列代表的文档中的词频、TFIDF值或其他。
2. 对Term-Document矩阵进行SVD奇异值分解,此时M = U * S * VT。SVD奇异值分解的详细过程可以查看此文。
3. 对SVD分解后的矩阵进行降维,只保留矩阵S前K个最大的奇异值得到S’。相应的U、V分别为U’、V’。 V’中的每行即为每个文档在潜在语义空间上的K维表示。
4. 使用降维后的矩阵重建Term-Document矩阵M’ = U’ * S’ * V’T。
5. 对于一个列向量表示的新文档Q,其在潜在语义空间上的K维表示为Q’ = QT*U’*S’-1。
6. 将新文档Q于文档集中的每个文档在潜在语义空间进行相似度计算,得到与Q最相似的文档。
下面是一个具体的例子,例子中能展现LSA的效果:M中human-C2值为0,因为文档C2中并不包含词human,但是重建后的M’中human-C2为0.40,表明human和C2有一定的关系,为什么呢?因为C2中包含user单词,和human是近似词,因此human-C2的值被提高了。(U、S、V中阴影部分别降维后的U’、S’、V’)。
LSA在复旦大学文本分类语料库上的验证:
(1)从分类语料中选取了Computer、Agriculture、Sports三个类别的文章,每个类别各取50篇左右。对每篇文章进行切词,停用词过滤后得到这里需要的的实验文档集。
(2) 使用Gensim对实验文档集进行LSA
1: from gensim import corpora, models, similarities
2:
3: textset = 'C:\\Users\\Administrator\\Desktop\\LSA\\textset.txt'
4: texts = [line.lower().split() for line in open(textset)]
5:
6: # Map word to wordid, delete word occur only once
7: dictionary = corpora.Dictionary(texts)
8: once_ids = [tokenid for tokenid, docfreq in dictionary.dfs.iteritems() if docfreq == 1]
9: dictionary.filter_tokens(once_ids)
10: dictionary.compactify()
11:
12: corpus = [dictionary.doc2bow(text) for text in texts]
13:
14: # Use TF-IDF
15: tfidf = models.TfidfModel(corpus)
16: corpus_tfidf = tfidf[corpus]
17:
18: # Use LSI
19: lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=3)
20: corpus_lsi = lsi[corpus_tfidf]
21:
22: for doc in corpus_lsi:
23: print doc
(3) 画出每个文档在3维的潜语义空间上的对应坐标点,得到下图。可以看到整个文档集内的文档,朝3个方向分布,分别对应Computer、Agriculture、Sports三个类别。
转自本人博客:http://www.datalab.sinaapp.com/
潜语义分析(Latent Semantic Analysis)的更多相关文章
- 潜在语义分析Latent semantic analysis note(LSA)原理及代码
文章引用:http://blog.sina.com.cn/s/blog_62a9902f0101cjl3.html Latent Semantic Analysis (LSA)也被称为Latent S ...
- Latent Semantic Analysis (LSA) Tutorial 潜语义分析LSA介绍 一
Latent Semantic Analysis (LSA) Tutorial 译:http://www.puffinwarellc.com/index.php/news-and-articles/a ...
- 主题模型之概率潜在语义分析(Probabilistic Latent Semantic Analysis)
上一篇总结了潜在语义分析(Latent Semantic Analysis, LSA),LSA主要使用了线性代数中奇异值分解的方法,但是并没有严格的概率推导,由于文本文档的维度往往很高,如果在主题聚类 ...
- 主题模型之潜在语义分析(Latent Semantic Analysis)
主题模型(Topic Models)是一套试图在大量文档中发现潜在主题结构的机器学习模型,主题模型通过分析文本中的词来发现文档中的主题.主题之间的联系方式和主题的发展.通过主题模型可以使我们组织和总结 ...
- NLP —— 图模型(三)pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)模型
LSA(Latent semantic analysis,隐性语义分析).pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)和 LDA(Late ...
- Latent semantic analysis note(LSA)
1 LSA Introduction LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deerwes ...
- Latent Semantic Analysis(LSA/ LSI)原理简介
LSA的工作原理: How Latent Semantic Analysis Works LSA被广泛用于文献检索,文本分类,垃圾邮件过滤,语言识别,模式检索以及文章评估自动化等场景. LSA其中一个 ...
- 海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis
http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- Notes on Probabilistic Latent Semantic Analysis (PLSA)
转自:http://www.hongliangjie.com/2010/01/04/notes-on-probabilistic-latent-semantic-analysis-plsa/ I hi ...
随机推荐
- 2014年度辛星html教程夏季版第七节
经过前面六节的学习,我们大致清楚了HTML教程中的基础内容,那么接下来我们开始继续向后推进,可以说,下面我们介绍一下HTML中的区块. ***************区块*************** ...
- vs2013下使用Assist X的破解方法
Assist X的破解下载:http://pan.baidu.com/s/1kTnDH23 密码:j9jp 01.安装,点击VA_X_Setup2042.exe 安装 02.破解 找到这样的目录:C: ...
- Excel技巧收录
帮老婆弄Excel,自己也把学到的东西记录下,免得以后被问到又给忘了 数据透视,需先在数据透视区域加上表头,如公司名称.销量等,Excel数据透视默认将选择区域的第一行作为表头 VLOOKUP,VLO ...
- Hbase region 某个regionserver挂掉后的处理
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwoAAACdCAMAAAAjbX91AAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK
- C# winform 弹出输入框
Microsoft.VisualBasic.dll 引用using Microsoft.VisualBasic; string PM = Interaction.InputBox("提示 ...
- JDBC MySQL字段类型为datetime的数据取出(util.Date)
使用ResultSet的getTimestamp方法获取java.util.Date型数据 java.util.Date time = rs.getTimestamp("time" ...
- jQuery 在IE下对表单中input type="file"的属性值清除
对一个文件域(input type=file)使用了验证后,我们总会希望把文件域中的值给清空了,在IE中,由于安全设置的原因,是不允许更改文件域的值的,接下来为大家介绍一下解决方法 一般来说,在对一个 ...
- pmtest1.asm pmtest2.asm pmtest5.asm 这几个比较重要.
读代码时注意Label后面的文字:desc表示是描述符,seg表示是段 pmtest1.asm 主要讲进入保护模式 http://www.cnblogs.com/wanghj-dz/archive/2 ...
- flash 类和对象的关系
每个具体的对象后面都隐藏着抽象的类. flash 中as3.0中所有的类,都是为了创建对象所用的.反过来,所创建的任何具体对象都隐藏着抽象的类. 类可以把它看做函数,类的属性是函数的数据,类的方法是函 ...
- [wikioi]线段覆盖
http://wikioi.com/problem/1214/ 这道题也归为贪心了.我也不是很能分辨,但想法确实是:1.有阶段最优化性:2.前一状态和后一状态有关系. 想法:1.排个序是很自然的想法, ...