【XSY3126】异或II 数学
题目描述
给你一个序列 \(a_0,a_1,\ldots,a_{n-1}\)。你要进行 \(t\) 次操作,每次操作是把序列 \(x\) 变为序列 \(y\),满足 \(y_i=\oplus_{j=0}^{k-1}x_{(i+j)\bmod n}\)。\(\oplus\) 表示异或。
求 \(t\) 次操作后的序列。
\(1\leq k\leq n\leq 500000,t\leq {10}^{18}\)
题解
设 \(f_{i,j}\) 为原序列进行 \(i\) 次操作后是哪些数的异或和。
设 \(F_i(x)=\sum_{j=0}^{n-1}f_{i,j}x^j\)
那么 \(F_i(x)=(1+x+\cdots x^{k-1})F_{i-1}(x)\)。
注意到模 \(2\) 意义下的多项式的平方是很好求的,只需要把所有 \(x^i\) 改成 \(x^{2i}\) 就好了。因为其他项的系数都是 \(2\)的倍数。
所以 \(F_{2^t}(x)=1+x^{2^t}+\cdots+x^{(k-1)2^t}\),那么乘上 \(F_{2^t}(x)\) 就是
\]
然后暴力算就可以了。
时间复杂度:\(O(n\log t)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<vector>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const int N=500010;
bool c[N];
int a[N];
int b[N];
int d[N];
int n,k;
ll m;
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int cnt;
int plus(int a,int b)
{
a+=b;
return a>=n?a-n:a;
}
int minus(int a,int b)
{
a-=b;
return a<0?a+n:a;
}
void gao(int t)
{
if(!t)
return;
memset(c,0,sizeof c);
memcpy(b,a,sizeof a);
int kk=k%(2*n/gcd(t,n));
for(int i=0;i<n;i++)
if(!c[i])
{
cnt=0;
for(int j=i;!c[j];j=plus(j,t))
d[++cnt]=j,c[j]=1;
int s=0;
int now=d[cnt];
for(int j=0;j<kk;j++,now=plus(now,t))
s^=b[now];
a[d[cnt]]=s;
for(int j=cnt-1;j>=1;j--)
{
now=minus(now,t);
s^=b[d[j]];
s^=b[now];
a[d[j]]=s;
}
}
}
int main()
{
open("b");
scanf("%d%d%lld",&n,&k,&m);
for(int i=0;i<n;i++)
a[i]=rd();
for(ll i=1;i<=m;i<<=1)
if(m&i)
gao(i%n);
for(int i=0;i<n;i++)
printf("%d ",a[i]);
return 0;
}
【XSY3126】异或II 数学的更多相关文章
- HDU 2080 夹角有多大II (数学) atan(y/x)分类求角度
夹角有多大II Problem Description 这次xhd面临的问题是这样的:在一个平面内有两个点,求两个点分别和原点的连线的夹角的大小.注:夹角的范围[0,180],两个点不会在圆心出现. ...
- nyoj--1011--So Easy[II](数学几何水题)
So Easy[II] 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 这是一道基础的计算几何问题(其实这不提示大家也都看的出).问题描述如下: 给你一个N边形.且N边形 ...
- [CSP-S模拟测试]:异或(数学)
题目描述 给定$L,R$,我们希望你求出:$$\sum\limits_{i=L}^R\sum\limits_{j=L}^R(i\oplus j)$$其中这里的$\oplus$表示异或运算.答案对$10 ...
- 1207 ACM 汉诺塔II 数学
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1207 中文题目,在原来三个柱子的情况下(汉诺塔一),增加了一个柱子,难度也增加了. 思路: 思考时尽量和汉 ...
- P1414 又是毕业季II (数学?
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
- Harmonic Number (II) 数学找规律
I was trying to solve problem '1234 - Harmonic Number', I wrote the following code long long H( int ...
- Delphi 异或,英文为exclusive OR,或缩写成xor
异或,英文为exclusive OR,或缩写成xor 异或(xor)是一个数学运算符.它应用于逻辑运算.异或的数学符号为“⊕”,计算机符号为“xor”.其运算法则为: a⊕b = (¬a ∧ b) ∨ ...
- 【转】算法杂货铺——k均值聚类(K-means)
k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...
- 机器学习六--K-means聚类算法
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...
随机推荐
- JavaScript类型化数组(二进制数组)
0.前言 对于前端程序员来说,平时很少和二进制数据打交道,所以基本上用不到ArrayBuffer,大家对它很陌生,但是在使用WebGL的时候,ArrayBuffer无处不在.浏览器通过WebGL和显卡 ...
- React Native基础&入门教程:以一个To Do List小例子,看props和state
本文由葡萄城技术团队于博客园原创并首发 转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 在上篇中,我们介绍了什么是Flexbox布局,以及如何使用Flexb ...
- 对国内AR产业的预言
先丢预言,国内任何AR公司,包含几大块,医疗行业.手机制造商和自动驾驶,倘若没有能力进行系统设计,最后都要死,或者裁掉业务. AR本身不会演化为独立的业务,而是作为辅助性的工具进入传统已经存在的部门之 ...
- CSS优先级的及其衡量标准CSS权重
一.背景 CSS有三大特性:层叠性.继承性.优先级. 而我们在给CSS定义样式的时候,经常出现两个及以上的规则应用在同一元素上,单该元素最终在浏览器呈现的效果是应用的哪个规则呢?这就要考虑优先级的问题 ...
- Linux常见系统故障
Linux常见系统故障 1.修复MBR扇区故障 2.修复GRUB引导故障 3./etc/inittab文件丢失 4.遗忘root用户密码 5.修复文件系统 6.磁盘资源耗尽故障 一.修复MBR扇区故障 ...
- Kafka 安装配置 windows 下
Kafka 安装配置 windows 下 标签(空格分隔): Kafka Kafka 内核部分需要安装jdk, zookeeper. 安装JDK 安装JDK就不需要讲解了,安装完配置下JAVA_HOM ...
- WebRtc编译好的vs2015源码
一直想看webrtc的源码,苦于FQ能力有限且整个编译过程耗时巨大,故求助于互联网.在互联网寻找许久编译好的Webrtc源码,好多版本下载下来总是报各种错误,很是失落. 皇天不负有心人,终于寻得一版可 ...
- kubernetes-核心资源之Ingress
1.Ingress 在Kubernetes中,服务和Pod的IP地址仅可以在集群网络内部使用,对于集群外的应用是不可见的.为了使外部的应用能够访问集群内的服务,在Kubernetes中可以通过Node ...
- kafka-rest:A Comprehensive, Open Source REST Proxy for Kafka
Ewen Cheslack-Postava March 25, 2015 时间有点久,但讲的还是很清楚的 As part of Confluent Platform 1.0 released ab ...
- (转)Cesium教程系列汇总
https://www.cnblogs.com/fuckgiser/p/5706842.html Cesium系列目录: 演示实例 ExamplesforCesium 最近老实有一些人问我,下载后在本 ...