In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of members of the general public. Every time a trial is set to begin, a jury has to be selected, which is done as follows. First, several people are drawn randomly from the public. For each person in this pool, defence and prosecution assign a grade from 0 to 20 indicating their preference for this person. 0 means total dislike, 20 on the other hand means that this person is considered ideally suited for the jury. 
Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties. 
We will now make this more precise: given a pool of n potential jurors and two values di (the defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,..., n} with m elements, then D(J ) = sum(dk) k belong to J 
and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution. 
For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties. 
You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.

Input

The input file contains several jury selection rounds. Each round starts with a line containing two integers n and m. n is the number of candidates and m the number of jury members. 
These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next. 
The file ends with a round that has n = m = 0.

Output

For each round output a line containing the number of the jury selection round ('Jury #1', 'Jury #2', etc.). 
On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number. 
Output an empty line after each test case.

Sample Input

4 2
1 2
2 3
4 1
6 2
0 0

Sample Output

Jury #1

Best jury has value 6 for prosecution and value 4 for defence:

2 3

题意:从n个人里面选m个人出来 每个人都有d,p两个值 选出来的m个人保证sum(d)-sum(p)的绝对值 最小

如果有相同的值 则输出sum(d)+sum(p)最大的

思路:我借鉴的是https://blog.csdn.net/ZscDst/article/details/80698624 这个博客的思路 dp[i][j]表示当前状态最大的和 i表示选人的个数 j表示差

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int dp[][];
vector<int> path[][];
int sub[]; //记录差
int sum[];// 记录和
int main(){
ios::sync_with_stdio(false);
int n,m;
int w=;
while(cin>>n>>m){
if(n==&&m==) break;
memset(dp,-,sizeof(dp));
memset(sum,,sizeof(sum));
memset(sub,,sizeof(sub));
int pos=m*;
for(int i=;i<=n;i++){
int d,p;
cin>>d>>p;
sub[i]=d-p;
sum[i]=d+p;
}
for(int i=;i<;i++)
for(int j=;j<;j++)
path[i][j].clear();
dp[][pos]=;
for(int i=;i<=n;i++)
for(int j=m;j>=;j--)
for(int k=;k<=*pos;k++){
if(k-sub[i]<||k-sub[i]>*pos) continue; //越界
if(dp[j-][k-sub[i]]==-) continue; //不可行方案
if(dp[j][k]<dp[j-][k-sub[i]]+sum[i]){
dp[j][k]=dp[j-][k-sub[i]]+sum[i];
path[j][k]=path[j-][k-sub[i]];
path[j][k].push_back(i);
}
}
int l=;
while(dp[m][pos+l]==-&&dp[m][pos-l]==-) l++; //找最小差的位置
if(dp[m][pos+l]>dp[m][pos-l]) l=l+pos;
else l=pos-l;
int lans=(dp[m][l]+l-pos)/;
int rans=(dp[m][l]+pos-l)/;
cout<<"Jury #"<<++w<<endl;
cout<<"Best jury has value "<<lans<<" for prosecution and value "<<rans;
cout<<" for defence:"<<endl;
for(int i=;i<m;i++)
cout<<" "<<path[m][l][i];
cout<<endl;
}
return ;
}

poj 1015 Jury Compromise(背包变形dp)的更多相关文章

  1. POJ 1015 Jury Compromise(双塔dp)

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33737   Accepted: 9109 ...

  2. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  3. poj 1015 Jury Compromise(背包+方案输出)

    \(Jury Compromise\) \(solution:\) 这道题很有意思,它的状态设得很...奇怪.但是它的数据范围实在是太暴露了.虽然当时还是想了好久好久,出题人设了几个限制(首先要两个的 ...

  4. OpenJudge 2979 陪审团的人选 / Poj 1015 Jury Compromise

    1.链接地址: http://bailian.openjudge.cn/practice/2979 http://poj.org/problem?id=1015 2.题目: 总Time Limit: ...

  5. POJ 1015 Jury Compromise 2个月后重做,其实这是背包题目

    http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从 ...

  6. [Poj 1015] Jury Compromise 解题报告 (完全背包)

    题目链接:http://poj.org/problem?id=1015 题目: 题解: 我们考虑设计DP状态(因为这很显然是一个完全背包问题不是吗?) dp[j][k]表示在外层循环到i时,选了j个人 ...

  7. POJ 1015 Jury Compromise dp分组

    第一次做dp分组的问题,百度的~~ http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑 ...

  8. POJ 1015 Jury Compromise(dp坑)

    提议:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团.选m人的办法是:控方和辩方会根据对候选 ...

  9. POJ 1015 Jury Compromise dp

    大致题意: 从n个候选人中选出m个人作为陪审团.为了让陪审团的选择更公平,辩方和控方都为这n个候选人给出了满意度(辩方为D[j],控方为P[j],范围0至20).现在要使得选出的m位候选人的辩方总和与 ...

随机推荐

  1. ARouter学习随笔

    今天看了会ARouter,在这里简单记录下 跟着其他大哥的博客学习了下,总感觉不牢固,借此机会再次简单记录下. 第一步:ARouter 配置 android { defaultConfig { ... ...

  2. Kotlin入门(32)网络接口访问

    手机上的资源毕竟有限,为了获取更丰富的信息,就得到辽阔的互联网大海上冲浪.对于App自身,也要经常与服务器交互,以便获取最新的数据显示到界面上.这个客户端与服务端之间的信息交互,基本使用HTTP协议进 ...

  3. ORA-12537: Network Session: End of file

    最近开发组同事使用Azure的Function App访问公司内部的Oracle数据库时,偶尔会遇到"ORA-12537: Network Session: End of file" ...

  4. Oracle 10g 应用补丁PSU 10.2.0.5.180717

    最近测试了一下在Oracle 10g下面(单实例下面)升级.应用补丁PSU 10.2.0.5.180717,打这个补丁的主要原因是 Oracle 将于 2019年6月启用新的SCN兼容性,并且由于Bi ...

  5. ASP.NET Zero--前期要求

    前期要求 需要以下工具才能使用ASP.NET Zero Core解决方案: Visual Studio 2017 + Visual Studio扩展: Bundler&Minifier Web ...

  6. python正则表达式模块re

    正则表达式的特殊元素 匹配符号 描述 '.'(点dot) 在默认模式下,它匹配除换行符之外的任何字符.如果指定了DOTALL标志,则匹配包括换行符在内的任何字符 '^'(Caret) 匹配以字符串开头 ...

  7. 把exe注册为windows服务

    1.需要工具 Instsrv.exe(可以给系统安装和删除服务) Srvany.exe(可以让程序以服务的方式运行) 2.运行cmd,输入注册服务命令 "instsrv.exe完整路径&qu ...

  8. Oracle导入、导出数据库dmp文件

    版本 1.实例数据完全导出 即导出指定实例下的所有数据 exp username/password@192.168.234.73/orcl file=d:/daochu/test.dmp full=y ...

  9. 我的第一个python web开发框架(31)——定制ORM(七)

    几个复杂的ORM方式都已介绍完了,剩下一些常用的删除.获取记录数量.统计合计数.获取最大值.获取最小值等方法我就不一一详细介绍了,直接给出代码大家自行查看. #!/usr/bin/env python ...

  10. “软到不行”的WWDC2018

    转载请标明来源:https://www.cnblogs.com/zhanggui/p/9154542.html 简介 一年一度的WWDC于北京时间6月5号凌晨1点在加利福利亚州圣何塞的麦克恩利会议中心 ...