【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)
【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)
题面
题解
看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵。
这两个操作本质就是一样的,不妨考虑有多少个全\(1\)子矩阵。
预处理出每个元素向上能够找的最多的\(1\)的个数,对于每一行从做往右扫一遍,拿一个单调栈维护一下,这样子就可以计算出以每个元素为右下角时的贡献了。
时间复杂度\(O(n^2logV)\),在BZOJ上因为常数太大T了QwQ。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1010
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,a[MAX][MAX],b[MAX][MAX],u[MAX][MAX];
int Q[MAX],h,t,ans1=0,ans2=0;
int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)a[i][j]=read();
for(int k=0;k<31;++k)
{
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)b[i][j]=(a[i][j]>>k)&1;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(!b[i][j])u[i][j]=0;
else u[i][j]=u[i-1][j]+1;
for(int i=1;i<=n;++i)
{
Q[h=t=1]=0;int now=0;
for(int j=1;j<=n;++j)
{
while(h<t&&u[i][Q[t]]>=u[i][j])now=(now+MOD-1ll*(Q[t]-Q[t-1])*u[i][Q[t]]%MOD)%MOD,--t;
now=(now+1ll*(j-Q[t])*u[i][j])%MOD;Q[++t]=j;
ans1=(ans1+1ll*now*(1<<k))%MOD;
}
}
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)b[i][j]^=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(!b[i][j])u[i][j]=0;
else u[i][j]=u[i-1][j]+1;
ans2=(ans2+1ll*(1<<k)%MOD*(1ll*n*(n+1)/2*n*(n+1)/2%MOD)%MOD)%MOD;
for(int i=1;i<=n;++i)
{
Q[h=t=1]=0;int now=0;
for(int j=1;j<=n;++j)
{
while(h<t&&u[i][Q[t]]>=u[i][j])now=(now+MOD-1ll*(Q[t]-Q[t-1])*u[i][Q[t]]%MOD)%MOD,--t;
now=(now+1ll*(j-Q[t])*u[i][j])%MOD;Q[++t]=j;
ans2=(ans2+MOD-1ll*now*(1<<k)%MOD)%MOD;
}
}
continue;
}
printf("%d %d\n",ans1,ans2);
return 0;
}
【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)的更多相关文章
- [LOJ3083][GXOI/GZOI2019]与或和——单调栈
题目链接: [GXOI/GZOI2019]与或和 既然求的是二进制运算的和,那么我们按位考虑,这样就将矩阵变成了一个$01$矩阵. 对于或运算,就是求有多少个子矩形中有$1$. 直接求不好办,考虑有多 ...
- 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)
LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...
- [GXOI/GZOI2019]与或和(单调栈)
想了想决定把这几题也随便水个解题报告... bzoj luogu 思路: 首先肯定得拆成二进制30位啊 此后每一位的就是个01矩阵 Q1就是全是1的矩阵个数 Q2就是总矩阵个数减去全是0的矩阵个数 ...
- LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位
#3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...
- 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】
题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...
- LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)
题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...
- [GXOI/GZOI2019]与或和(位运算,单调栈)
题目链接懒得放了. 题目大意懒得写了. 省选原题哪有找不到的…… 说实话,其实这题是个大水题,被我十秒钟内口胡出来了. 首先位运算除了拆位还能干啥?以下以与为例,或是差不多的. 我们考虑有多少个子矩阵 ...
- [GX/GZOI2019]与或和(单调栈+按位运算)
首先看到与或,很显然想到按照位拆分运算.然后就变成了0/1矩阵,要使矩阵在当前位与为1,则矩阵全为1,如果是或为1,则是矩阵不全为0,然后求全为0/1的矩阵个数即可.记录c[i][j]表示以a[i][ ...
- P5300 [GXOI/GZOI2019]与或和
题目地址:P5300 [GXOI/GZOI2019]与或和 考虑按位计算贡献 对于 AND 运算,只有全 \(1\) 子矩阵才会有贡献 对于 OR 运算,所以非全 \(0\) 子矩阵均有贡献 如果求一 ...
随机推荐
- Android远程桌面助手(Build 0787)
Android远程桌面助手(Build 0787) 新增: 增加了输入法的快速切换功能,支持通过Google拼音输入法在PC端快速输入中文: 增加了Broadcast的暂停和继续功能: 某些应用截屏失 ...
- ORACLE中如何查找定位表最后DML操作的时间小结
在Oracle数据库中,如何查找,定位一张表最后一次的DML操作的时间呢? 方式有三种,不过都有一些局限性,下面简单的解析.总结一下. 1:使用ORA_ROWSCN伪列获取表最后的DML时间 ORA_ ...
- centos下Django+uwsgi+nginx
本篇章主要讲解uwsgi和nginx的作用,并利用两者对django项目进行部署 一.概述 在开发过程中,我们一般是在该项目的虚拟环境中启用django自带的web服务:python manage.p ...
- MySQL常用数值函数
数值函数: 用来处理很多数值方面的运算,使用数值函数,可以免去很多繁杂的判断求值的过程,能够大大提高用户的工作效率. 1.ABS(x):返回 x 的绝对值 mysql> select abs(- ...
- Server 2008 R2多用户远程桌面连接授权,解决120天过期问题
在工作中,我们往往需要远程服务器,经常会遇到以下这两个麻烦事. 一.远程桌面的连接数限制,超出系统就会提示超过连接数. 二.远程桌面连接时,同一个用户不能同时远程2个桌面连接. ----------- ...
- raise
raise 后边一般是更报错处理的,比如nameerror.先上代码 try: a='a0'+8 except: print('l') raise else: print('women') print ...
- Linux中Tomcat设置开机启动
设置方法 1.修改/etc/rc.d/rc.local,使用vi /etc/rc.d/rc.local 命令 2.在/etc/rc.d/rc.local文件最后添加下面两行脚本 export JAVA ...
- Extending the Yahoo! Streaming Benchmark
could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...
- 前端学习-基础部分-css(一)
开始今日份整理 1.CSS的导入方式 CSS的导入方式主要是有内联模式,行内模式,外部样式表 1.1 内联模式 内联模式:直接在<head>中直接写css,例如 p{ color:rgb( ...
- 011_Python中单线程、多线程和多进程的效率对比实验
Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势.而使用多进程(Multiprocess),则可以发挥多 ...