# -*- coding: utf-8 -*-
"""
Created on Wed Oct 17 08:49:28 2018

@author: Administrator
"""
import tensorflow as tf
"引入input_data.py,注:Python文件必须与input_data.py在同一文件夹下"
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('./input_data', one_hot=True, validation_size=100)
sess = tf.InteractiveSession()
x = tf.placeholder("float",shape=[None,784])
y_ = tf.placeholder("float",shape=[None,10])
"定义权重W和偏置b"
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
"变量在session中初始化"
sess.run(tf.initialize_all_variables())
"权重初始化"

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

"卷积与池化"
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
"第一层卷积"
"前两个维度是patch的大小,接着是输入的通道数目,最后是输出的通道数目。"
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
"第二层卷积"
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
"密集连接层"
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
"在输出层之前加入dropout"
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
"添加softmax层"
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
"训练和评估模型"
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print ("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print ("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

MNIST机器学习进阶的更多相关文章

  1. TensorFlow 学习(4)——MNIST机器学习进阶

    要进一步改进MNIST学习算法,需要对卷积神经网络进行学习和了解 学习材料参见https://www.cnblogs.com/skyfsm/p/6790245.html 卷积神经网络依旧是层级网络,只 ...

  2. [转]MNIST机器学习入门

    MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_ ...

  3. Tensorflow之MNIST机器学习入门

    MNIST机器学习的原理: 通过一次次的 输入某张图片的像素值(用784维向量表示)以及这张图片对应的数字(用10维向量表示比如数字1用[0,1,0,0,0,0,0,0,0,0]表示),来优化10*7 ...

  4. tensorfllow MNIST机器学习入门

    MNIST机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读 ...

  5. Tensorflow学习笔记(一):MNIST机器学习入门

    学习深度学习,首先从深度学习的入门MNIST入手.通过这个例子,了解Tensorflow的工作流程和机器学习的基本概念. 一  MNIST数据集 MNIST是入门级的计算机视觉数据集,包含了各种手写数 ...

  6. MNIST机器学习

    MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 1. MNIST数据集 MNIST,是不是听起来特高端大气,不知道这个是什么东西? == 手写数字分类问题所要用到的(经典)MNIS ...

  7. TensorFlow框架(3)之MNIST机器学习入门

    1. MNIST数据集 1.1 概述 Tensorflow框架载tensorflow.contrib.learn.python.learn.datasets包中提供多个机器学习的数据集.本节介绍的是M ...

  8. MNIST机器学习数据集

    介绍 在学习机器学习的时候,首当其冲的就是准备一份通用的数据集,方便与其他的算法进行比较.在这里,我写了一个用于加载MNIST数据集的方法,并将其进行封装,主要用于将MNIST数据集转换成numpy. ...

  9. MNIST机器学习入门(一)

    一.简介 首先介绍MNIST 数据集.如图1-1 所示, MNIST 数据集主要由一些手写数字的图片和相应的标签组成,图片一共有10 类,分别对应从0-9 ,共10 个阿拉伯数字. 原始的MNIST ...

随机推荐

  1. mint修改host

    sudo xed /etc/hosts # Pycharm 0.0.0.0 account.jetbrains.com0.0.0.0 www.jetbrains.com #sublime text3 ...

  2. 键盘坏了几个键位之后,linux上的remap方法

    Use xev command to find the keycode xmodmap -pke |more To Change keymapping for this Laptop: 我是日文键盘, ...

  3. WIN10下Java环境变量配置

    首先,你应该已经安装了 Java 的 JDK 了(如果没有安装JDK,请跳转到此网址:http://www.oracle.com/technetwork/java/javase/downloads/i ...

  4. Rails6新增rails db:system:change更换数据库

    rails db:system:change --to=postgresql rails db:system:change --to=mysql rails db:system:change --to ...

  5. 论文笔记(Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration)

    这是CVPR 2019的一篇oral. 预备知识点:Geometric median 几何中位数 \begin{equation}\underset{y \in \mathbb{R}^{n}}{\ar ...

  6. Web前端开发标准规范

    web前端开发规范的意义 提高团队的协作能力 提高代码的复用利用率 可以写出质量更高,效率更好的代码 为后期维护提供更好的支持 一.命名规则 命名使用英文语义化,禁止使用特殊字符,禁止使用拼音,禁止使 ...

  7. 崔庆才Python3网络爬虫开发实战电子版书籍分享

    资料下载地址: 链接:https://pan.baidu.com/s/1WV-_XHZvYIedsC1GJ1hOtw 提取码:4o94 <崔庆才Python3网络爬虫开发实战>高清中文版P ...

  8. 局域网内Ping不通

    局域网ping不通, 原来不可忽视这步......... 通常,经常在局域网里面,为了检测网络是否顺畅,都会ping一下IP,如果网络正常,就可以上网或者远程处理其他故障.但是会出现ping别人的主机 ...

  9. 缺少的文件是 ..\packages\Microsoft.Net.Compilers.1.0.0\build\Microsoft.Net.Compilers.props。

    报错信息: 严重性 代码 说明 项目级别 文件 行 禁止显示状态 工具错误 这台计算机上缺少此项目引用的 NuGet 程序包.使用“NuGet 程序包还原”可下载这些程序包.有关更多信息,请参见 ht ...

  10. 【Redfin SDE intern】跪经

    萌新的面试第一弹 Redfin是我求职生涯中的第一家,第一个电面,第一个onsite.除了结果不好,其他过程都很好... 春节当天风风火火去西雅图面试,之前分配的五个面试官其中有两个中国人,然而全部被 ...