tensorFlow入门实践(三)实现lenet5(代码结构优化)
这两周我学习了北京大学曹建老师的TensorFlow笔记课程,认为老师讲的很不错的,很适合于想要在短期内上手完成一个相关项目的同学,课程在b站和MOOC平台都可以找到。
在卷积神经网络一节,课程以lenet5为例,给出了完整的代码,通过这样一个例子完成了模型构建、较大数据量的训练和测试。整个代码不复杂,架构完整,我觉得代码很干净,很优秀,所以想把之后需要实现的Alexnet等网络结构都按照这个代码的结构来改。
下面是lenet5实现,数据集依然mnist。
forward.py
#coding:utf-8
import tensorflow as tf
IMAGE_SIZE = 28
NUM_CHANNELS = 1
CONV1_SIZE = 5
CONV1_KERNEL_NUM = 32
CONV2_SIZE = 5
CONV2_KERNEL_NUM = 64
FC_SIZE = 512
OUTPUT_NODE = 10 def get_weight(shape, regularizer): # 参数:生成张量的维度、正则化权重
w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b def conv2d(x, w): #参数:输入图片x和所用卷积核w 都为四阶张量
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def forward(x, train, regularizer):
conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer)
conv1_b = get_bias([CONV1_KERNEL_NUM])
conv1 = conv2d(x, conv1_w)
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b))
pool1 = max_pool_2x2(relu1) conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM], regularizer)
conv2_b = get_bias([CONV2_KERNEL_NUM])
conv2 = conv2d(pool1, conv2_w)
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
pool2 = max_pool_2x2(relu2)
# pool2为第二个卷积层的输出,需要把它从三维张量变为二维张量 pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
# [0]是betch的值,此处我们提取[1][2][3]是特征的长、宽、深度相乘得到所有特征点的个数
reshaped = tf.reshape(pool2, [pool_shape[0], nodes]) # 重塑为二维 fcl_w = get_weight([nodes, FC_SIZE], regularizer)
fcl_b = get_bias([FC_SIZE])
fcl = tf.nn.relu(tf.matmul(reshaped, fcl_w) + fcl_b) # 将二维特征输入全连接网络
if train: fcl = tf.nn.dropout(fcl, 0.5) # 如果是训练阶段,则对该层的输出进行50%dropout fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
fc2_b = get_bias(OUTPUT_NODE)
y = tf.matmul(fcl, fc2_w) + fc2_b
return y
backward.py
#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
import forward
import numpy as np BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.005
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH="./model/"
MODEL_NAME="mnist_model" def backward(mnist):
x = tf.placeholder(tf.float32, [
BATCH_SIZE,
forward.IMAGE_SIZE,
forward.IMAGE_SIZE,
forward.NUM_CHANNELS
])
y_ = tf.placeholder(tf.float32, [None, forward.OUTPUT_NODE])
y = forward.forward(x, True, REGULARIZER)
global_step = tf.Variable(0, trainable=False) ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses')) learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True
) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train') saver = tf.train.Saver() with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op) ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path) for i in range(STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
reshaped_xs = np.reshape(xs, (
BATCH_SIZE,
forward.IMAGE_SIZE,
forward.IMAGE_SIZE,
forward.NUM_CHANNELS))
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})
if i % 100 == 0:
print("After %d training step(s), loss an training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main():
mnist = input_data.read_data_sets("data", one_hot=True)
backward(mnist) if __name__=='__main__':
main()
test.py
# coding:utf-8
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import forward
import backward
import numpy as np TEST_INTERVAL_SECS = 5 def evaluate(mnist):
with tf.Graph().as_default() as g: # 再现图
x = tf.placeholder(tf.float32, [
mnist.test.num_examples,
forward.IMAGE_SIZE,
forward.IMAGE_SIZE,
forward.NUM_CHANNELS])
y_ = tf.placeholder(tf.float32, [None, forward.OUTPUT_NODE])
y = forward.forward(x, False, None) # 实例化带滑动平均的Saver对象
ema = tf.train.ExponentialMovingAverage(backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(backward.MODEL_SAVE_PATH)
# 判断是否有模型,如果有,恢复模型到当前会话
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
reshaped_x = np.reshape(mnist.test.images, (
mnist.test.num_examples,
forward.IMAGE_SIZE,
forward.IMAGE_SIZE,
forward.NUM_CHANNELS))
accuracy_score = sess.run(accuracy, feed_dict={x: reshaped_x, y_: mnist.test.labels})
print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(TEST_INTERVAL_SECS) def main():
mnist = input_data.read_data_sets("data", one_hot=True)
evaluate(mnist) if __name__ == '__main__':
main()
在自己电脑上运行还真的需要time.sleep,要不然跑起来CPU占用一直99%只能强制关机了。
while True 的循环体,会一直判断并拿到当前最新的训练模型,电脑上实现不能够边训练边测试,不能看到测试准确率在整个训练过程中的变化,只能看到最后的结果啦。(训练完成用了整整一天)
下一步就是明天参考着这个完成Alexnet的整体实现啦。
tensorFlow入门实践(三)实现lenet5(代码结构优化)的更多相关文章
- OpenCL入门:(三:GPU内存结构和性能优化)
如果我们需要优化kernel程序,我们必须知道一些GPU的底层知识,本文简单介绍一下GPU内存相关和线程调度知识,并且用一个小示例演示如何简单根据内存结构优化. 一.GPU总线寻址和合并内存访问 假设 ...
- c++开发ocx入门实践三--基于opencv的简易视频播发器ocx
原文:http://blog.csdn.net/yhhyhhyhhyhh/article/details/51404649 利用opencv做了个简易的视频播放器的ocx,可以在c++/c#/web ...
- cocos creator主程入门教程(八)—— 代码结构
五邑隐侠,本名关健昌,10年游戏生涯,现隐居五邑.本系列文章以TypeScript为介绍语言. 这一篇简单介绍下代码结构,清晰的代码结构更有利于团队对项目的理解和维护. 1.前面我们介绍了一系列基础功 ...
- tensorFlow入门实践(三)初识AlexNet实现结构
参考黄文坚<TensorFlow实战>一书,完成AlexNet的整体实现并展望其训练和预测过程. import tensorflow as tf batch_size = 32 num_b ...
- TensorFlow入门之MNIST样例代码分析
这几天想系统的学习一下TensorFlow,为之后的工作打下一些基础.看了下<TensorFlow:实战Google深度学习框架>这本书,目前个人觉得这本书还是对初学者挺友好的,作者站在初 ...
- tensorflow入门(三)
三种代价函数 1,二次代价函数 式子代表预测值与样本值的差得平方和 由于使用的是梯度下降法,我们对变量w,b分别求偏导: 这种函数对于处理线性的关系比较好,但是如果遇到s型函数(如下图所示),效率 ...
- tensorFlow入门实践(二)模块化
实现过一个例子之后,对TensorFlow运行机制有了初步的了解,但脑海中还没有一个如何实现神经网络的一个架构模型.下面我们来探讨如何模块化搭建神经网络,完成数据训练和预测. 首先我们将整体架构分为两 ...
- tensorFlow入门实践(一)
首先应用TensorFlow完成一个线性回归,了解TensorFlow的数据类型和运行机制. import tensorflow as tf import numpy as np import mat ...
- TensorFlow入门(三)多层 CNNs 实现 mnist分类
欢迎转载,但请务必注明原文出处及作者信息. 深入MNIST refer: http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mni ...
随机推荐
- 20175317 MyCP(课下作业,必做)
一.题目要求 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能,要求MyCP支持两个参数: java MyCP -tx XXX1.txt XXX2.bin 用来把文本文件(内 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- mybatis-generator自动生成Mapper.dao.entity
在pom.xml中添加依赖 <plugin> <groupId>org.mybatis.generator</groupId> <artifactId> ...
- CHM文件命令转换成html
在Windows下chm转换为html的超简单方法(反编译CHM文件的方法) 通过调用Windows命令,将chm 文件转换为html 文件. 方法: 命令行(cmd),输入hh -decompile ...
- 在Mac os 10.11 下编译Berkeley caffe
安装各种补丁和组件,缺啥装啥. python 采用 2.7.13 最新版. 安装工具 homebrew , pip 很繁琐,但是没难度. 由于本人macbook pro不支持CUDA,所以不用安装. ...
- GlusterFS分布式文件系统的使用
glusterfs是一款开源的分布式文件系统. 它具备高扩展.高可用及高性能等特性,由于其无元数据服务器的设计,使其真正实现了线性的扩展能力,使存储总容量可轻松达到PB级别,支持数千客户端并发访问. ...
- .NET开发工程师职业规划
本人结合自己的实际状况和未来的职业规划,所做学习计划如下: 初级开发工程师(1年) 熟悉C#语言:熟悉MVC原理:熟悉 SQL Server Oracle MySql其中一种数据库,能独立编写增.删. ...
- python之asyncio三种应用方法
1.直接使用asyncio.run方法2.同步的效果,用await调用函数3.创建任务(asyncio.create_task),并发运行任务(await asyncio.gather) import ...
- js里面对数据处理的方法
1,charAt()方法可返回指定位置的字符 JavaScript String 对象 例:stringObject.charAt(index) index:表示字符串中某个位置的数字,即字符在字 ...
- .net core 连接mysql
Package引入: mysql.data MySql.Data.EntityFrameworkCore Pomelo.EntityFrameworkCore.MySql 2. 在package ma ...