啥叫模板匹配

模板匹配就是在大图中找小图,也就说在一幅图像中寻找另一幅模板图像的位置:

OpenCV使用 cv2.matchTemplate() 实现模板匹配。

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2] # rows->h, cols->w

匹配函数返回的是一幅灰度图,最白的地方表示最大的匹配。使用 cv2.minMaxLoc() 函数可以得到最大匹配值的坐标,以这个点为左上角角点,模板的宽和高画矩形就是匹配的位置了:

# 相关系数匹配方法: cv2.TM_CCOEFF
res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) left_top = max_loc # 左上角
right_bottom = (left_top[0] + w, left_top[1] + h) # 右下角
cv2.rectangle(img, left_top, right_bottom, 255, 2) # 画出矩形位置 plt.subplot(121), plt.imshow(res, cmap='gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(img, cmap='gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.show()

模板匹配的原理

模板匹配的原理其实很简单,就是不断地在原图中移动模板图像去比较,有6种不同的比较方法,详细请参考:TemplateMatchModes

  • 平方差匹配 CV_TM_SQDIFF:用两者的平方差来匹配
  • 归一化平方差匹配 CV_TM_SQDIFF_NORMED
  • 相关匹配 CV_TM_CCORR:用两者的乘积匹配,数值越大表明匹配程度越好
  • 归一化相关匹配 CV_TM_CCORR_NORMED
  • 相关系数匹配 CV_TM_CCOEFF:用两者的相关系数匹配,1表示完美匹配,-1表示最差匹配
  • 归一化相关系数匹配 CV_TM_CCOEFF_NORMED

归一化的意思就是将值统一到0~1,这六种方法的对比详情请见 Template Matching. 模板匹配也是应用卷积来实现的:假设原图大小为 WxH,模板图大小为 w×h,那么生成图大小是(W-w+1)x(H-h+1),生成图中的每个像素值表示原图与模板的匹配程度

匹配多个物体

前面我们是找最大匹配的点,所以只能匹配一次。我们可以设定一个匹配阈值来匹配多次:

# 1. 读入原图和模板
img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2] # 归一化平方差匹配
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8 # 这段代码后面会有解释
loc = np.where(res >= threshold) # 匹配程度大于80%的坐标y,x
for pt in zip(*loc[::-1]): # *号表示可选参数
right_bottom = (pt[0] + w, pt[1] + h)
cv2.rectangle(img_rgb, pt, right_bottom, (0, 0, 255), 2) cv2.imwrite('res.png', img_rgb)

这里解释一下第三段的代码:

1. np.where() 在这里返回res中值大于0.8的所有坐标,如:

x = np.arange(9.).reshape(3, 3)
print(np.where(x > 5))
(array([2, 2, 2], dtype=int64), array([0, 1, 2], dtype=int64))
结果的含义是(先y坐标,在x坐标)

2. zip() 函数

x = [1, 2, 3]
y = [4, 5, 6]
print(list(zip(x, y)))
[(1, 4), (2, 5), (3, 6)]

这样的解释的话,第三段代码就好理解了:因为loc是先y坐标再x坐标,所以用loc[::-1]翻转一下,然后再用zip函数拼接一下。

思考一下:

图片旋转或缩放的话,模板匹配还有作用吗?

答案是没有作用,因为只有平移的动作,并没有考虑到其他图像特征。这也是模板匹配的局限性所在,但可以使用改进的模板匹配算法。

参考百科链接:https://baike.baidu.com/item/模板匹配

												

OpenCV-Python:模板匹配的更多相关文章

  1. opencv MatchTemplate()模板匹配寻找最匹配部分

    通常,随着从简单的测量(平方差)到更复杂的测量(相关系数),可以获得越来越准确的匹配,然而,这同时也会以越来越大的计算量为代价.比较科学的方法是对所有这些方法多次测试实验,以便为自己的应用选择同时兼顾 ...

  2. 使用Python+OpenCV进行图像模板匹配(Match Template)

    2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤 ...

  3. Python+OpenCV图像处理(九)—— 模板匹配

    百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...

  4. 模板匹配入门实践:opencv+python识别PDB板

    任务要求: 基于模板匹配算法识别PCB板型号 使用工具: Python3.OpenCV 使用模板匹配算法,模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识 ...

  5. opencv模板匹配查找图像(python)

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np from cv2 import COLOR_B ...

  6. 使用OpenCV&&C++进行模板匹配.

    一:课程介绍 1.1:学习目标 学会用imread载入图像,和imshow输出图像. 用nameWindow创建窗口,用createTrackbar加入滚动条和其回调函数的写法. 熟悉OpenCV函数 ...

  7. opencv 模板匹配与滑动窗口(单匹配) (多匹配)

    1单匹配: 测试图片:   code: #include <opencv\cv.h> #include <opencv\highgui.h> #include <open ...

  8. opencv 在工业中的应用:模板匹配

    模板匹配在工业中经常有两个用途,一模板匹配进行产品定位,二根据匹配度来判断是OK的产品还是NG的产品.我用OPENCV做了个模板匹配定位的DEMO. (1)点击打开图像按钮打开一幅图像 (2)点击定义 ...

  9. OpenCV探索之路(九):模板匹配

    模板匹配的作用在图像识别领域作用可大了.那什么是模板匹配? 模板匹配,就是在一幅图像中寻找另一幅模板图像最匹配(也就是最相似)的部分的技术. 说的有点抽象,下面给个例子说明就很明白了. 在上面这幅全明 ...

  10. OpenCV 学习笔记(模板匹配)

    OpenCV 学习笔记(模板匹配) 模板匹配是在一幅图像中寻找一个特定目标的方法之一.这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否"相似",当相似度足够 ...

随机推荐

  1. 告别回调,拥抱async await

    之前使用jquery中ajax,请求的结果需要写在回调函数里面,后面接触到了axios/fetch,使用了es6中Promise进行封装,这种链式结构调用,看起来比之前直观,可是还是没有解决回调的问题 ...

  2. Celery

    在程序的运行过程中,我们经常会碰到一些耗时耗资源的操作,为了避免它们阻塞主程序的运行,我们经常会采用多线程或异步任务.比如,在 Web 开发中,对新用户的注册,我们通常会给他发一封激活邮件,而发邮件是 ...

  3. Linux-ftp虚拟用户配置

    云服务器ESC 部署vsftpd 虚拟用户 说明:云服务器部署和本地服务器部署一样,都需要开通指定的相应端口,只不过云服务器需要在安全组规则中打开相应的端口允许通过. 环境说明: 对应的用户对应不同的 ...

  4. 升级AndroidStudio3.4问题汇总

    1.Could not get unknown property 'bootClasspath' for object of type org.gradle.api.tasks.compile.Com ...

  5. python3.x执行post请求时报错“POST data should be bytes or an iterable of bytes...”的解决方法

    使用python3.5.1执行post请求时,一直报错"POST data should be bytes or an iterable of bytes. It cannot be of ...

  6. vue的v-model指令

    v-model指令用来绑定表单,数据传值. 如上,当在信息1输入框(表单)中输入值时,数据会对应变化:在信息2输入框中输入值时,数据并未变化. <div id="app"&g ...

  7. 0. Java虚拟机系列备忘预览图

    打算把Java虚拟机这块单独弄一个主题出来,做做备忘,结构如图所示: 后面还有一部分待更新...

  8. CSS3总结一:border(边框)

    Border-CSS1的属性 Border-CSS1:border Border-CSS1:border-style Border-CSS1:border-width Border-CSS1:bord ...

  9. Python 中使用 matplotlib 绘图中文字符显示异常的问题

    最近在使用 Python matplotlib 绘制图表时发现中文字符不能正确显示:比如在绘制折线图时,中文全部显示成▢▢▢的格式,虽然将数据改成英文就没什么问题,但是所有数据都这么做时不可行的,于是 ...

  10. Docker实践之02-使用镜像及定制

    目录 一.获取镜像 二.使用镜像启动容器实例 三.列出镜像 四.删除本地镜像 五.定制镜像 通过commit命令定制镜像 通过Dockerfile定制镜像 docker build的工作原理 dock ...