OpenCV-Python:模板匹配
啥叫模板匹配
模板匹配就是在大图中找小图,也就说在一幅图像中寻找另一幅模板图像的位置:

OpenCV使用 cv2.matchTemplate() 实现模板匹配。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2] # rows->h, cols->w
匹配函数返回的是一幅灰度图,最白的地方表示最大的匹配。使用 cv2.minMaxLoc() 函数可以得到最大匹配值的坐标,以这个点为左上角角点,模板的宽和高画矩形就是匹配的位置了:
# 相关系数匹配方法: cv2.TM_CCOEFF
res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) left_top = max_loc # 左上角
right_bottom = (left_top[0] + w, left_top[1] + h) # 右下角
cv2.rectangle(img, left_top, right_bottom, 255, 2) # 画出矩形位置 plt.subplot(121), plt.imshow(res, cmap='gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(img, cmap='gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.show()

模板匹配的原理
模板匹配的原理其实很简单,就是不断地在原图中移动模板图像去比较,有6种不同的比较方法,详细请参考:TemplateMatchModes
- 平方差匹配 CV_TM_SQDIFF:用两者的平方差来匹配
- 归一化平方差匹配 CV_TM_SQDIFF_NORMED
- 相关匹配 CV_TM_CCORR:用两者的乘积匹配,数值越大表明匹配程度越好
- 归一化相关匹配 CV_TM_CCORR_NORMED
- 相关系数匹配 CV_TM_CCOEFF:用两者的相关系数匹配,1表示完美匹配,-1表示最差匹配
- 归一化相关系数匹配 CV_TM_CCOEFF_NORMED
归一化的意思就是将值统一到0~1,这六种方法的对比详情请见 Template Matching. 模板匹配也是应用卷积来实现的:假设原图大小为 WxH,模板图大小为 w×h,那么生成图大小是(W-w+1)x(H-h+1),生成图中的每个像素值表示原图与模板的匹配程度
匹配多个物体
前面我们是找最大匹配的点,所以只能匹配一次。我们可以设定一个匹配阈值来匹配多次:
# 1. 读入原图和模板
img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2] # 归一化平方差匹配
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8 # 这段代码后面会有解释
loc = np.where(res >= threshold) # 匹配程度大于80%的坐标y,x
for pt in zip(*loc[::-1]): # *号表示可选参数
right_bottom = (pt[0] + w, pt[1] + h)
cv2.rectangle(img_rgb, pt, right_bottom, (0, 0, 255), 2) cv2.imwrite('res.png', img_rgb)

这里解释一下第三段的代码:
1. np.where() 在这里返回res中值大于0.8的所有坐标,如:
x = np.arange(9.).reshape(3, 3)
print(np.where(x > 5))
(array([2, 2, 2], dtype=int64), array([0, 1, 2], dtype=int64))
结果的含义是(先y坐标,在x坐标)

2. zip() 函数
x = [1, 2, 3]
y = [4, 5, 6]
print(list(zip(x, y)))
[(1, 4), (2, 5), (3, 6)]
这样的解释的话,第三段代码就好理解了:因为loc是先y坐标再x坐标,所以用loc[::-1]翻转一下,然后再用zip函数拼接一下。
思考一下:
图片旋转或缩放的话,模板匹配还有作用吗?
答案是没有作用,因为只有平移的动作,并没有考虑到其他图像特征。这也是模板匹配的局限性所在,但可以使用改进的模板匹配算法。
参考百科链接:https://baike.baidu.com/item/模板匹配
OpenCV-Python:模板匹配的更多相关文章
- opencv MatchTemplate()模板匹配寻找最匹配部分
通常,随着从简单的测量(平方差)到更复杂的测量(相关系数),可以获得越来越准确的匹配,然而,这同时也会以越来越大的计算量为代价.比较科学的方法是对所有这些方法多次测试实验,以便为自己的应用选择同时兼顾 ...
- 使用Python+OpenCV进行图像模板匹配(Match Template)
2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤 ...
- Python+OpenCV图像处理(九)—— 模板匹配
百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...
- 模板匹配入门实践:opencv+python识别PDB板
任务要求: 基于模板匹配算法识别PCB板型号 使用工具: Python3.OpenCV 使用模板匹配算法,模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识 ...
- opencv模板匹配查找图像(python)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np from cv2 import COLOR_B ...
- 使用OpenCV&&C++进行模板匹配.
一:课程介绍 1.1:学习目标 学会用imread载入图像,和imshow输出图像. 用nameWindow创建窗口,用createTrackbar加入滚动条和其回调函数的写法. 熟悉OpenCV函数 ...
- opencv 模板匹配与滑动窗口(单匹配) (多匹配)
1单匹配: 测试图片: code: #include <opencv\cv.h> #include <opencv\highgui.h> #include <open ...
- opencv 在工业中的应用:模板匹配
模板匹配在工业中经常有两个用途,一模板匹配进行产品定位,二根据匹配度来判断是OK的产品还是NG的产品.我用OPENCV做了个模板匹配定位的DEMO. (1)点击打开图像按钮打开一幅图像 (2)点击定义 ...
- OpenCV探索之路(九):模板匹配
模板匹配的作用在图像识别领域作用可大了.那什么是模板匹配? 模板匹配,就是在一幅图像中寻找另一幅模板图像最匹配(也就是最相似)的部分的技术. 说的有点抽象,下面给个例子说明就很明白了. 在上面这幅全明 ...
- OpenCV 学习笔记(模板匹配)
OpenCV 学习笔记(模板匹配) 模板匹配是在一幅图像中寻找一个特定目标的方法之一.这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否"相似",当相似度足够 ...
随机推荐
- 快速沃尔什变换(FWT)及K进制异或卷积&快速子集变换(FST)讲解
前言: $FWT$是用来处理位运算(异或.与.或)卷积的一种变换.位运算卷积是什么?形如$f[i]=\sum\limits_{j\oplus k==i}^{ }g[j]*h[k]$的卷积形式(其中$\ ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- python 用嵌套列表做矩阵加法
写一个函数,接收两个由嵌套列表模拟成的矩阵,返回一个嵌套列表作为计算结果,要求运行效果如下: >>> matrix1 = [[1, 1], [-3, 4]] >>> ...
- sqlserver建立远程查询
开始远程查询前: ----open:Ad Hoc Distributed QueriesEXEC sp_configure 'show advanced options',1reconfigureex ...
- (二分查找 拓展) leetcode 162. Find Peak Element && lintcode 75. Find Peak Element
A peak element is an element that is greater than its neighbors. Given an input array nums, where nu ...
- vue路由实现多视图的单页应用
多视图的单页应用:在一个页面中实现多个页面不同切换,url也发生相应变化. router-view结合this.$router.push("/pickUp")实现,效果如下: 当点 ...
- sklearn中的损失函数
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...
- Linux之 proc文件系统
用户态与内核态交互的接口之一,管理方式与普通文件相同每个节点的文件权限(读/写)决定其查看和配置权限大量LINUX系统参数和状态信息可通过proc节点查看或配置/proc/<pid>/:查 ...
- wpf编写一个简单的PDF转换的程序
wpf 调用Spire.Pdf将PDF文件转换为其他文件模式 首先在Nuget里下载该第三方包Spire.Pdf. 然后可以编写程序 //这里我调用的是解析成流模式,这是因为我要使用ProgressB ...
- 布隆过滤器(Bloom Filter) 未完待续
布隆过滤器雏形 未完待续..... 计算错误率 现在有一个空额布隆过滤器, 过滤器里的bit array的大小是m. 咱来插入一个元素. 这次插入过程中的第一个hash函数会算出一个位置, 然后把这个 ...