【数论】卢卡斯定理模板 洛谷P3807
【数论】卢卡斯定理模板 洛谷P3807
>>>>题目
【题目】
https://www.luogu.org/problemnew/show/P3807
【输入格式】
第一行一个整数T(T\le 10T≤10),表示数据组数
第二行开始共T行,每行三个数n m p,意义如上
【输出格式】
共T行,每行一个整数表示答案。
【输入样例】
2
1 2 5
2 1 5
【输出样例】
3
3
>>>>分析
emmmm模板题还是不用分析了吧
卢卡斯定理解决的就是组合数C(n,m)中m,n太大的情况
根据定理的内容,C(n,m)=C(n/p,m/p)*C(n%p,m%p)其中p是模数
我们只需要不断递归求解C(n/p,m/p)就可以啦
因为同余方程不满足两边同时除一个数,那么只能将除一个数转化成乘这个数在模数p意义下的逆元
求逆元的方式有很多种,在我的另一个博客里面会有详细介绍φ(>ω<*)
#include<bits/stdc++.h>
#define ll long long
#define L I64d
#define maxn 100005
using namespace std;
ll fac[*maxn];
int p,T;
void init(int n,int m)//预处理阶乘
{
fac[]=;
for(int i=;i<=n+m;i++) fac[i]=fac[i-]*i%p;
}
ll quickpow(ll x,ll y)
{
ll ans=;
while(y)
{
if(y&) ans=ans*x%p;
x=x*x%p;
y=y>>;
}
return ans%p;
}
ll C(ll m,ll n)
{
if(m>n) return ;
return fac[n]*quickpow(fac[m],p-)%p*quickpow(fac[n-m],p-);//费马小定理求逆元
}
ll lucas(ll m,ll n)
{
if(!m) return ;
return lucas(m/p,n/p)*C(m%p,n%p)%p;
}
int main()
{
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d%d",&n,&m,&p);
init();
printf("%Ld\n",lucas(m,n+m));
}
return ;
}
/*
2
1 2 5
2 1 5
*/
完结撒花✿✿ヽ(°▽°)ノ✿
【数论】卢卡斯定理模板 洛谷P3807的更多相关文章
- KMP字符串匹配 模板 洛谷 P3375
KMP字符串匹配 模板 洛谷 P3375 题意 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.(如果 ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 洛谷 P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- 【模板】LIS模板 洛谷P1091 [NOIP2004提高组]合唱队形 [2017年4月计划 动态规划11]
以题写模板. 写了两个:n^2版本与nlogn版本 P1091 合唱队形 题目描述 N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形. 合唱队形是指这样的一种队 ...
- 树链剖分模板(洛谷P3384)
洛谷P3384 #include <bits/stdc++.h> #define DBG(x) cerr << #x << " = " < ...
- [洛谷P3807]【模板】卢卡斯定理
题目大意:给你$n,m,p(p \in \rm prime)$,求出$C_{n + m}^m\bmod p(可能p\leqslant n,m)$ 题解:卢卡斯$Lucas$定理,$C_B^A\bmod ...
- 洛谷P3807 【模板】卢卡斯定理exgcd
题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105 ) 求 C_{n+m}^{m}\ mod\ pCn+mm mod p 保证P为pri ...
随机推荐
- 我所知道的JavaScript中判断数据类型
相信一提到怎么判断js的数据类型,大家都会想到的是typeof.instanceof,那么为什么有了typeof的存在还要有instanceof? typeof? 根据MDN:typeof操作符返回一 ...
- 写好shell脚本
转载自https://mp.weixin.qq.com/s/f3xDHZ7dCQr7sHJ9KDvuyQ 1.提供--help标记 安装在系统上的二进制文件通常带有man帮助文档,但对于脚本来说就不一 ...
- 项目遇到的小问题(关于vue-cli中js点击事件不起作用和iconfont图片下载页面css样式乱的解答)
第一个:关于vue-cli中js点击事件不起作用 在vue的methods方法queryBtnFun()中拼接html和click操作事件的时候,发现点击事件一起未起作用: 后来发现是DOM执行顺序 ...
- Vue 组件&组件之间的通信 之 使用slot分发内容
slot详细介绍网址:https://cn.vuejs.org/v2/api/#slot 有时候我们需要在自定义组件内书写一些内容,例如: <com-a> <h1>title& ...
- 【Diary】
[写日记是好习惯] 前记 很随意的日记.想什么写什么,没有限制. 希望以后看到曾经,努力的自己比摸鱼的自己多. 2019.3 2019.3.29 第24次请假打卡 xzh:那些理科男以后都会当IT工作 ...
- Linux 最小系统制作
Linux 最小系统制作 一.制作工具Busybox 在制作文件系统的时候,我们需要使用“Busybox 工具”,即为附件压缩包“busybox-1.21.1.tar.bz2”.“BusyBox 工具 ...
- java.lang.IllegalStateException: getWriter() has already been called for this response
出现此异常的三种可能: 1.通过response.reset(); 刷新可能存在一些未关闭的getWriter(). 来源:http://blog.csdn.net/wonder4/article/ ...
- 微信小程序框架集合
UI组件 weui-wxss ★852 - 同微信原生视觉体验一致的基础样式库 Wa-UI ★122 - 针对微信小程序整合的一套UI库 wx-charts ★105 - 微信小程序图表工具 wema ...
- Bigger-Mai 养成计划,Python基础巩固四
一.装饰器:定义:本质是函数,(装饰其他函数)就是为其他函数添加附加功能.原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰函数的调用方式实现装饰器的知识储备:1.函数即‘变量’2.高阶函数 ...
- BalkanOI 2018 Parentrises(贪心+基础DP)
题意 https://loj.ac/problem/2713 思路 对于 \(\text{P1}\) 的档,首先可以看出 \(O(n^3)\) 的方法,即用 \(O(n^3)\) 的 \(\text{ ...