James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) be the quotient space obtained from \(\mathbb{R}_K\) by collapsing the set \(K\) to a point; let \(p: \mathbb{R}_K \rightarrow Y\) be the quotient map.
(a) Show that \(Y\) satisfies the \(T_1\) axiom, but is not Hausdorff.
(b) Show that \(p \times p: \mathbb{R}_K \times \mathbb{R}_K \rightarrow Y \times Y\) is not a quotient map.
Comment This exercise shows that the product map of two quotient maps is not necessarily a quotient map.
Proof: (a) At first, we will clarify the forms of open sets in the quotient space \(Y\), which are defined as the images of saturated open sets in \(\mathbb{R}_K\) under the quotient map \(p\). Assume the set \(K\) coalesces to \(\alpha\), \(Y\) can be written as: \(Y = (\mathbb{R} - K) \cup \{\alpha\}\). For any \(x\) in \(\mathbb{R} - K\), \(p^{-1}(x) = x\) and \(p^{-1}(\alpha) = K\). Then the saturated open sets in \(\mathbb{R}_K\) have the following two forms:
- open set \(U\) of \(\mathbb{R}_K\) which contains \(K\);
- \(U - K\) with \(U\) being arbitrary open set in \(\mathbb{R}_K\).
Then their images under the quotient map \(p\) are
- \((U - K) \cup \{\alpha\}\) with \(K \subsetneq U\)
- \(U - K\)
which comprise the quotient topology on \(Y\). To prove \(Y\) satisfies the \(T_1\)-axiom, by referring to Theorem 17.8, we only need to show that one-point set \(\{x_0\}\) is closed. Then finite union of such closed singletons is also closed. To achieve this, there are two cases to be discussed.
If \(x_0 = \alpha\), for any point \(x \in Y\) and \(x \neq x_0\), i.e. \(x \in \mathbb{R} - K\), there exists an open set \(U - K\) in \(Y\) containing \(x\), which does not contain \(x_0\). Therefore, for all \(x \in \mathbb{R} - K\), it does not belong to the closure of \(\{\alpha\}\). Hence \(\{\alpha\}\) is closed.
If \(x_0 \in \mathbb{R} - K\), there are further two sub-cases:
For any \(x \in \mathbb{R} - K\) and \(x \neq x_0\), because \(\mathbb{R}_K\) is Hausdorff, there exists open sets \(U\) and \(V\) in \(\mathbb{R}_K\), such that \(x_0 \in U\), \(x \in V\) and \(U \cap V = \Phi\). Then \(x_0 \in (U - K)\), \(x \in (V - K)\) and \((U - K) \cap (V - K) = \Phi\), where both \(U - K\) and \(V - K\) are open in \(Y\). Hence \(\{x_0\} \cap (V - K) = \Phi\).
For \(x = \alpha\), the open set containing \(x\) has the form \((U - K) \cup \{\alpha\}\) where \(U\) is an open set in \(\mathbb{R}_K\) containing \(K\). Then,
- when \(x_0 \in (-\infty, 0]\), let \(U = (0, 2)\);
- when \(x_0 \in (0, 1]\), let \(U = (0,x_0) \cup (x_0, \frac{3}{2})\);
- when \(x_0 \in (1, +\infty)\), let \(U = (0,x_0)\),
such that \(K \subset U\) and \(\{x_0\} \cap ((U - K) \cup \{\alpha\}) = \Phi\).
Combining the above two sub-cases, we have for any \(x \neq x_0\) in \(Y\), it does not belong to the closure of \(\{x_0\}\). Hence \(\{x_0\}\) is closed.
Summarize the above cases, one-point set in \(Y\) is closed. Hence \(Y\) satisfies the \(T_1\)-axiom.
Next, we will show \(Y\) is not Hausdorff.
Let \(x_1, x_2 \in Y\), \(x_1 = \alpha\) and \(x_2 = 0\). For any open set in \(Y\) containing 0 but not \(\alpha\), it must have the form \(V - K\) with \(V\) being open in \(\mathbb{R}_K\). Then there exists an open interval \((a_2, b_2)\) with \(a_2 < 0\) and \(b_2 > 0\) such that \(0 \in (a_2, b_2)\) and \((a_2, b_2) \subset V\). We can find an \(n_0 \in \mathbb{Z}_+\) such that \(\frac{1}{n_0} < b_2\) and hence \(\frac{1}{n_0} \in (a_2, b_2)\). Meanwhile, any open set containing \(\alpha\) has the form \((U - K ) \cup \{\alpha\}\) with \(U\) being open in \(\mathbb{R}_K\) and \(K \subsetneq U\). Then there exists an open interval \((a_1,b_1)\) such that \(\frac{1}{n_0} \in (a_1, b_1)\) and \((a_1, b_1) \subset U\). Therefore, \((a_1,b_1) \cap (a_2,b_2) \neq \Phi\) and \(U \cap V \neq \Phi\), especially, \((U-K)\cap(V-K)\neq\Phi\). Hence, \(((U-K)\cup\{\alpha\}) \cap (V-K) \neq \Phi\). Therefore, for any open set containing 0, there is no open set containing \(\alpha\) which has no intersection with it. So \(Y\) is not Hausdorff.
(b) To prove this part, Exercise 13 in Section 17 should be adopted, which is presented below:
\(X\) is Hausdorff if and only if the diagonal \(\Delta = \{x \times x \vert x \in X \}\) is closed in \(X \times X\).
- If \(X\) is Hausdorff, for any \(x_1, x_2 \in X\) and \(x_1 \neq x_2\), there exist \(U\) and \(V\) open in \(X\) such that \(x_1 \in U\), \(x_2 \in V\) and \(U \cap V = \Phi\). Because \(U\) and \(V\) have no common points, \((U \times V) \cap \Delta = \Phi\). Then according to Theorem 17.5, \((x_1, x_2)\) does not belong to the closure of \(\Delta\). Because \(x_1\) and \(x_2\) are arbitrary two different points in \(X\), \(\Delta\) is closed.
- On the contrary, if \(\Delta\) is closed, for all \(x_1, x_2 \in X\) and \(x_1 \neq x_2\), there exists an open set \(W\) in \(X \times X\) containing \((x_1,x_2)\) such that \(W \cap \Delta = \Phi\). Then there exists a basis element \(U \times V\) in \(X \times X\) such that \((x_1, x_2) \subset U \times V \subset W\). Hence \(x_1 \in U\) and \(x_2 \in V\). Because \((U \times V) \cap \Delta = \Phi\), \(U \cap V = \Phi\). Because \(x_1\) and \(x_2\) are arbitrary two different points in \(X\), \(X\) is Hausdorff.
With the proved S17E13 and the obtained conclusion in part (a) that \(Y\) is no Hausdorff, we know that the diagonal set \(\Delta\) is not closed in \(Y \times Y\). Meanwhile, because its preimage \((p \times p)^{-1}(\Delta) = \{x \times x \vert x \in \mathbb{R}\}\) is closed in \(\mathbb{R}_K \times \mathbb{R}_K\), the product map \(p \times p\) is not a quotient map.
Finally, the following figure illustrates the original space \(\mathbb{R}_K\) and the quotient space \(Y\). The transformation from \(\mathbb{R}_K\) to \(Y\) can be considered as merging a countable number of knots on a rope.

PS: Because the world we are living in is Hausdorff, Diagon Alley is always closed.
James Munkres Topology: Sec 22 Exer 6的更多相关文章
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
随机推荐
- CentOS 7 网卡配置对比
1.DHCP模式(原始) [root@centos7-minimal /]# vim /etc/sysconfig/network-scripts/ifcfg-eno16777736 TYPE=&qu ...
- charles抓包https设置
写在前面 https抓包的实现 (一)首先,电脑得装个证书 (二)然后,移动设备上安装证书 (三)最后,Charles添加SSL Proxying 写在前面 开发时,面对各种接口数据,绝大多数时间都会 ...
- python学习05
数据类型之字典dict.set集合 1).字典dict 1. dict_1={'name':'tom','age':18} 是以键值对(key-value)的方式,其中键是可hash值的,即表示键是唯 ...
- 线段树——习题、lazy解析
习题: C. Cloud Computing lazy操作解析:
- centos7.4下的python3.6的安装
1.系统环境 :centos 7.4 最小化安装 2.安装过程 yum install wget 安装下载工具 wget https://www.python.org/ftp/python/ ...
- sql server 删除所有表和递归查询、数字类型转为字符串
1.删除所有表 select 'drop table '+name+';' from sys.tables where name like 'DataSyncV1DelaySample%' or na ...
- thinkphp在iis上不是出现500错误
按照官方文档,部署好iis下面URL重定向文件后,出现500错误,不停地百度,不停地修改web.config文件,终也不成. 在虚拟空间调整了php版本,一下子就好了.原来的版本为5.4,调整为5.6 ...
- 本地Git与Github建立关联
准备 本地与Github建立连接,需要用到SSH公钥.一般安装完Git,会在用户目录中生成一个 .ssh的文件夹 如果没有此文件夹,可以通过命令创建 $ ssh-keygen -t rsa -C &q ...
- 在Linux搭建Git服务器
搭建Git服务器 https://www.cnblogs.com/dee0912/p/5815267.html Git客户端的安装 https://www.cnblogs.com/xuwenjin/p ...
- nb-iot简介【转】
转自:http://www.elecfans.com/tags/nb-iot/ 标签 > nb-iot nb-iot 关注 118人关注 提供NB-IoT技术特点,NB-IoT模块/芯片,NB- ...