STA 463 Simple Linear Regression Report
STA 463 Simple Linear Regression Report
Spring 2019
The goal of this part of the project is to perform a thorough simple linear regression analysis on data collected by each group. In addition, a report will be created to introduce and summarize your analysis finding.
By Wednesday, April 24, 11:40 am, each group should upload to the canvas website (1) a 2-3 pages report (the reference and appendix is not counted for the page limit); (2) a separate R file containing all the code you used, with clear notations for the program to indicate what you have done in your analysis.
1.The report should contain the following parts:
Title and authors;
Abstract: A paragraph-long summary of the research including the context, research questions, methods, and findings of your simple linear regression model;
Introduction: The introduction should include a brief description of the data you are analyzing, the important finding you had done in your EDA that leads you to this stage of analysis. And clearly state your simple linear regression research questions. You can also provide a summary of other existing research results/literatures on similar topic if there is any;
Methods and Analysis: Describe the whole analysis you have done. You should do a complete simple linear regression analysis for the research questions you have listed in the Introduction section. (hint: if you find any seriously violations in the assumptions, you should use appropriate remedial methods to edit your model;
Results: Use graphs or tables (make sure they are properly labeled, titled and formatted, please make sure no screenshot of the table/picture is allowed.) to answer all the research questions you raised in the introduction section. In this part, you should include the statistical conclusions based on the graphs/tables you get. Interpret your results assuming your audience are people who have some background in linear regression analysis;
Conclusion and Discussion: A conclusion paragraph that summarizes your findings from the project. Also include some questions you have and any idea for potential follow-up work;
STA 463作业代写、Linear留学生作业代做、R语言作业代做、R程序设计作业代做
References: Choose a particular citation format (for example APA, Chicago, MLA, etc, styles). You should cite any resources you used (it could be journal articles, website, etc. Remember to cite the source of the dataset as well. );
Appendix: Other graphs or tables that you didn’t include in the main part of the project, if there’s any.
2.Grading Rubric:
Different Aspects of the report Criteria Points
Abstract Clearly and concise summary the context, research questions, methods, and findings. 4
Introduction Clear statements of the findings and the research questions. With meaningful explanations. 4
Methods and Analysis Regression analysis is complete and correct. The assumptions are checked and violations of assumptions are appropriately addressed. 10
Results Clearly address the research questions through the tables/graphs. Only relevant outputs are included. Appropriate and meaningful interpretations of the results are included. 4
Conclusions and Discussions The results are clearly summarized and the research questions are adequately addressed. Future work or possible research directions has been mentioned. 4
Format The writing is well-done. The graphs/tables are properly labeled, titled and formatted. The references follow the required format. There’re very few issues with spelling/language/grammar, etc. 4
Readability of code The code is well documented and structured for readability. Appropriate comment is used to instruct users the functions of each part of your program. The code is properly indented. 2
Code reproducibility The results from the code are correct and the same as what you have provided in your report. 3
因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com
微信:codinghelp
STA 463 Simple Linear Regression Report的更多相关文章
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
- 机器学习---线性回归(Machine Learning Linear Regression)
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元 ...
- 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)
从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...
- 机器学习:线性回归法(Linear Regression)
# 注:使用线性回归算法的前提是,假设数据存在线性关系,如果最后求得的准确度R < 0,则说明很可能数据间不存在任何线性关系(也可能是算法中间出现错误),此时就要检查算法或者考虑使用其它算法: ...
- [Sklearn] Linear regression models to fit noisy data
Ref: [Link] sklearn各种回归和预测[各线性模型对噪声的反应] Ref: Linear Regression 实战[循序渐进思考过程] Ref: simple linear regre ...
- Simple tutorial for using TensorFlow to compute a linear regression
"""Simple tutorial for using TensorFlow to compute a linear regression. Parag K. Mita ...
- Regularized Linear Regression with scikit-learn
Regularized Linear Regression with scikit-learn Earlier we covered Ordinary Least Squares regression ...
- Linear Regression with machine learning methods
Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a sim ...
- 多重线性回归 (multiple linear regression) | 变量选择 | 最佳模型 | 基本假设的诊断方法
P133,这是第二次作业,考察多重线性回归.这个youtube频道真是精品,用R做统计.这里是R代码的总结. 连续变量和类别型变量总要分开讨论: 多重线性回归可以写成矩阵形式的一元一次回归:相当于把多 ...
随机推荐
- 关于PHP上传文件时配置 php.ini 中的 upload_tmp_dir
在<PHP 5.3 入门经典>9.6.3 的试一试中(P235),给出了一个上传文件的例子,这里的文件格式为jpeg图片(image/jpeg).如果之前未配置 php.ini 中的 up ...
- 布思算法Java实现
public String multiply(String Q,String M){ char Q0 = '0'; String A = get01(Q.length(),"0") ...
- CentOS7上部署taiga项目管理软件
作者:waringid 一.简介 Taiga 是一个免费开源,而且功能非常强大的项目管理平台,用于初创企业和敏捷开发团队.提供一个简单.漂亮的项目管理工具.Taiga 采用 Python Django ...
- 解决Linux(Loaded plugins: fastestmirror Please use /usr/bin/yum --help)
大概意思是fastestmirror不能使用,fastestmirror是yum的一个加速插件 处理办法就是禁用这个插件 方法两种 第一种 vi /etc/yum/pluginconf.d/faste ...
- web开篇
一.内容回顾 1.python基础 2.网络编程 3.并发编程 4.前端 5.数据库(MySQL) 二.今日概要 1.了解Web应用程序的本质 2.Django简介及安装使用 三.今日详细 1.最简单 ...
- Eclipse安装git插件以及关联导入GitHub项目
一.Eclipse配置git 1.查看自己eclipse的版本 打开eclipse 导航: help->AboutEclipse 如图: 2.检查Eclipse中是否已安装Git插件 菜单栏He ...
- 1002-谈谈ELK日志分析平台的性能优化理念
在生产环境中,我们为了更好的服务于业务,通常会通过优化的手段来实现服务对外的性能最大化,节省系统性能开支:关注我的朋友们都知道,前段时间一直在搞ELK,同时也记录在了个人的博客篇章中,从部署到各个服务 ...
- Linux下如何查看系统启动时间和运行时间以及安装时间
1.uptime命令输出:16:11:40 up 59 days, 4:21, 2 users, load average: 0.00, 0.01, 0.00 2.查看/proc/uptime文件计算 ...
- pycharm中连接公网IP方法
我们的公网IP可以加到pycharm里面,这样程序跑的时候,在测试过程中就用pycharm直接修改文件,然后在pycharm里面上传,操作更加便捷 在pycharm中找到tool按钮,在菜单栏里面 然 ...
- ISP PIPLINE (三) BPC
what is the Bad Pixel? 坏点为死点,也就是基本不随照度变化呈现光电线性转换的关系.表现为暗态常亮,亮态常暗. 坏点分类:静态坏点:亮坏点,暗坏点. ...