poj-2516.minimum cost(k次费用流)
Minimum Cost
| Time Limit: 4000MS | Memory Limit: 65536K | |
| Total Submissions: 19883 | Accepted: 7055 |
Description
It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.
Input
Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.
The input is terminated with three "0"s. This test case should not be processed.
Output
Sample Input
1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0
Sample Output
4
-1
Source
都在代码里了,不不建议抄袭代码,代码里有些调试代码,有需要的可以看代码之前注释,前面是解释,精髓在最后三行。
/*
本题心得:一开始做题就有种感觉需要对商品拆点,然后满足每个商人,但是这样的话每个商品要拆为n个点,必然会有很大的空间浪费造成tle,
实在没思路之后看了博客,看到说每种商品都是独立的,意思就是把商人需要的每种物品都单独买,然后统计最后结果就行了,这里有一个细节就是,
因为目的是满足所有商人情况下的最小费用,那也就是最小费用最大流,所以我们事先判断某种商品是否够用,如果够用,那么最大流一定是满载的,
所以不必担心找不到最大流,就找最小花费就行了。
对于每个商品,我们记得要清空head数组,额贼,这个把我坑了好久,后来想如果不清空必然会在spfa中造成无限循环(想想为什么?),所以对每件
商品都需要init,对于每件商品,我们建立超级源点指向那些供应商,容量为最大供应数目花费为0,对于每个商人,我们建立一条边指向超级汇点,容量为商人
对这件商品的需求数目(限制每个商人得到的物品数),花费为0,对于每个供应商和他的商人之间建立一条由供应商指向商人的边,cap为inf(由于前面我们已经限制了每个供应商可以提供的物品)
花费为这个供应商对这个商人供应这件物品的cost,跑一波费用流就ojk了。
这样我们就
通过供应商 -> 商人 限制了价格
通过 s -> 供应商 限制了供应个数
通过商人 -> t 限制了商人的需求数目。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int maxn = + , maxm = 1e4 + , inf = 0x3f3f3f3f;
int want[maxn][maxn], supply[maxn][maxn], sumwant[maxn], sumsupply[maxn], costij[maxn][maxn][maxn];
struct Edge {
int to, next, cap, flow, cost, from;
} edge[maxm];
int head[maxn << ], tot;
int pre[maxn << ], dis[maxn << ];
bool vis[maxn << ]; int N; void init(int n) {
N = n;
tot = ;
memset(head, -, sizeof head);
} void addedge(int u, int v, int cap, int cost) {
edge[tot].to = v; edge[tot].cap = cap; edge[tot].cost = cost; edge[tot].flow = ; edge[tot].from = u;
edge[tot].next = head[u]; head[u] = tot ++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].cost = -cost; edge[tot].flow = ; edge[tot].from = v;
edge[tot].next = head[v]; head[v] = tot ++;
} bool spfa(int s, int t) {
queue <int> que;
// memset(dis, inf, sizeof dis);
// memset(vis, false, sizeof vis);
// memset(pre, -1, sizeof pre);
for(int i = ; i <= N; i ++) {
dis[i] = inf;
vis[i] = false;
pre[i] = -;
}
dis[s] = ;
vis[s] = true;
que.push(s);
while(!que.empty()) {
// printf("in bfs");
int u = que.front();
que.pop();
vis[u] = false;
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost) {
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if(!vis[v]) {
vis[v] = true;
// printf("now in push of bfs");
que.push(v);
}
}
}
}
return ~pre[t];
// if(pre[t] == -1) return false;
// else return true;
} int mincostmaxflow(int s, int t) {
int cost = ;
while(spfa(s, t)) {
// printf("spfa is true");
int Min = inf;
for(int i = pre[t]; ~i; i = pre[edge[i ^ ].to]) {
if(Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
// printf("now is find min");
}
for(int i = pre[t]; ~i; i = pre[edge[i ^ ].to]) {
edge[i].flow += Min;
edge[i ^ ].flow -= Min;
cost += edge[i].cost * Min;
// printf("now is update");
}
}
return cost;
} int main() {
int n, m, k;
while(~scanf("%d %d %d", &n, &m, &k) && (n | m | k)) { memset(want, , sizeof want);
memset(supply, , sizeof supply);
memset(sumwant, , sizeof sumwant);
memset(sumsupply, , sizeof sumsupply);
for(int i = ; i <= n; i ++) {
for(int j = ; j <= k; j ++) {
scanf("%d", &want[i][j]);
sumwant[j] += want[i][j];
}
}
for(int i = ; i <= m; i ++) {
for(int j = ; j <= k; j ++) {
scanf("%d", &supply[i][j]);
sumsupply[j] += supply[i][j];
}
}
bool flag = true;
for(int i = ; i <= k; i ++) {
if(sumwant[i] > sumsupply[i]) {
flag = false;
break;
}
}
for(int q = ; q <= k; q ++) {
for(int i = ; i <= n; i ++) {
for(int j = ; j <= m; j ++) {
scanf("%d", &costij[q][i][j]);//第q件物品,第i个人从第j个供应商的花费
}
}
}
int s = , t = m + n + , mcmf = ;
if(flag) {
for(int q = ; q <= k; q ++) {
init(n + m + );
// printf("***************\n");
for(int i = ; i <= m; i ++) {
addedge(s, i, supply[i][q], );
}
for(int i = ; i <= n; i ++) {
addedge(i + m, t, want[i][q], );
}
for(int i = ; i <= n; i ++) {
for(int j = ; j <= m; j ++) {
addedge(j, i + m, inf, costij[q][i][j]);
}
}
// for(int i = 0; i < tot; i ++) {
// printf("%d -> %d\n", edge[i].from, edge[i].to);
// }
mcmf += mincostmaxflow(s, t);
}
printf("%d\n", mcmf);
} else printf("-1\n");
}
return ;
}
poj-2516.minimum cost(k次费用流)的更多相关文章
- POJ 2516 Minimum Cost (最小费用最大流)
POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...
- Poj 2516 Minimum Cost (最小花费最大流)
题目链接: Poj 2516 Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...
- POJ - 2516 Minimum Cost(最小费用最大流)
1.K种物品,M个供应商,N个收购商.每种物品从一个供应商运送到一个收购商有一个单位运费.每个收购商都需要K种物品中的若干.求满足所有收购商需求的前提下的最小运费. 2.K种物品拆开来,分别对每种物品 ...
- POJ 2516 Minimum Cost (网络流,最小费用流)
POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...
- POJ 2516 Minimum Cost (费用流)
题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...
- POJ - 2516 Minimum Cost 每次要跑K次费用流
传送门:poj.org/problem?id=2516 题意: 有m个仓库,n个买家,k个商品,每个仓库运送不同商品到不同买家的路费是不同的.问为了满足不同买家的订单的最小的花费. 思路: 设立一个源 ...
- POJ 2516 Minimum Cost(最小费用流)
Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...
- POJ 2516 Minimum Cost 最小费用流
题目: 给出n*kk的矩阵,格子a[i][k]表示第i个客户需要第k种货物a[i][k]单位. 给出m*kk的矩阵,格子b[j][k]表示第j个供应商可以提供第k种货物b[j][k]单位. 再给出k个 ...
- POJ 2516 Minimum Cost
每个物品分开做最小费用最大流. #include<cstdio> #include<cstring> #include<cmath> #include<vec ...
随机推荐
- Ubuntu安装SFTP服务,及启动失败处理
安装openssh-server sudo apt-get install openssh-server 查看是否安装成功 dpkg --get-selections | grep ssh 新建用户组 ...
- apply_nodes_func
import torch as th import dgl g=dgl.DGLGraph() g.add_nodes(3) g.ndata["x"]=th.ones(3,4) #n ...
- git-bash.exe参数
baidu搜了很多, 没有结果.估计大家都没有这个场景.google了一下, 几篇非常不错的结果: https://superuser.com/questions/1104567/how-can-i- ...
- Linux安装php扩展memcache
Linux安装php扩展memcache php扩展memcache的作用是为了支持memcached数据库缓存服务器,下面是安装方法.1.下载并解压memcache文件 wget -c http ...
- 【LuoguP3747】[六省联考2017] 相逢是问候
题目链接 题意 给定一个长度为 n 的序列 a , 给定一个正整数 c 每次修改操作是把一段区间内的数 \(x_i\) 修改为 \(c^{x_i}\) 询问区间和模 p 的结果 Sol 修改是把一个数 ...
- js原生高逼格插件
如何定义一个高逼格的原生JS插件 作为一个前端er,如果不会写一个小插件,都不好意思说自己是混前端界的.写还不能依赖jquery之类的工具库,否则装得不够高端.那么,如何才能装起来让自己看起来逼格更高 ...
- 【leetcode】1095. Find in Mountain Array
题目如下: (This problem is an interactive problem.) You may recall that an array A is a mountain array i ...
- 使用 flex 弹性布局 ,相关教程记录
一.Flex布局是什么? Flex是Flexible Box的缩写,意为"弹性布局",用来为盒状模型提供最大的灵活性. 任何一个容器都可以指定为Flex布局. .box1{ dis ...
- UITabbarController & UITabbar 学习
最后更新2016-04-06 一. UITabbarController 给UITabbarController 设置viewControllers熟悉时候,超过五个就会有一个 moreNavigat ...
- inux 下zip包的压缩与解压
linux zip 命令详解 功能说明:压缩文件. 语 法:zip [-AcdDfFghjJKlLmoqrSTuvVwXyz$][-b <工作目录>][-ll][-n <字尾字符串& ...