Link

题目给我们的这个东西可以转化为一棵\(k\)叉树,有\(n+m\)个叶子节点,其中\(m\)个权值为\(1\),\(n\)个权值为\(0\),每个非叶子节点的权值为其儿子的平均值,现在问你根节点的权值有多少种取值。

转化之后发现似乎可做了一点。(当然还是一道神仙题)

我们设\(n\)个权值为\(0\)的叶子节点的深度为\(x_1\sim x_n\),\(m\)个权值为\(1\)的叶子节点的深度为\(y_1\sim y_m\),根节点的权值为\(z\)。

那么有\(\sum\limits_{i=1}^mk^{-y_i}=z\)。

并且如果我们把所有叶子节点的权值都设为\(1\),那么树上所有点的权值都为\(1\),\(\sum\limits_{i=1}^mk^{-y_i}+\sum\limits_{i=1}^nk^{-x_i}=1\)即\(\sum\limits_{i=1}^nk^{-x_i}=1-z\)。

我们将\(z\)写成\(k\)进制下的小数形式,\(z=0.\overline{c_1\cdots c_l}\)。

那么对于一个\(k^{-y_i}\),它会让\(c_{y_i}+1\)。

因此在不考虑进位的情况下,\(\sum\limits_{i=1}^lc_i=m\)。

进位实质上就是某一位\(-k\),高位\(+1\),反映到数位和上就是\(-(k-1)\)。

因此在考虑进位的情况下,\(\sum\limits_{i=1}^lc_i\equiv m(\mod k-1)\)。

当然也有\(\sum\limits_{i=1}^lc_i\le m\)。

对\(1-z\)做类似的分析。

我们可以发现\(1-z\)的数位和就是\(\sum\limits_{i=1}^l(k-1-c_i)+1=l(k-1)+1-\sum\limits_{i=1}^lc_i\)。

后面那坨就是\(z\)的数位和对吧。

与求\(z\)的数位和的性质的过程类似,我们有\(l(k-1)+1-\sum\limits_{i=1}^lc_i\equiv n(\mod k-1)\)。

以及\(l(k-1)+1-\sum\limits_{i=1}^lc_i\le n\)。

那么我们就可以设计一个数位dp了。

首先这个\(k\)叉树的深度最多为\(\frac{n+m-1}{k-1}\),也就是说\(z\)和\(1-z\)最多有\(\frac{n+m-1}{k-1}\)位。

我们设\(f_{i,j,k}\)表示考虑前\(i\)位小数,数位和为\(j\)时的方案数。注意到小数不能存在后导\(0\),我们再开一维\(k\)表示最后一位是不是\(0\)。

那么有\(f_{i,j,0}=f_{i-1,j,0}+f_{i-1,j,1}\),

以及\(f_{i,j,1}=\sum\limits_{o=\max(0,j-k)}^{j-1}(f_{i-1,o,0}+f_{i-1,o,1})\)。

前缀和优化一下就行了。

求答案的时候判一下第二维是否满足上面的\(z\)和\(1-z\)的\(4\)个条件(\(\sum c\le m\)的实际上可以不用判,因为循环里面最多跑到了\(m\)),而且注意一下只能加第三维为\(1\)的答案。

#include<cstdio>
#include<cctype>
const int N=2007,P=1000000007;
int inc(int a,int b){return a+=b,a>=P? a-P:a;}
int dec(int a,int b){return a-=b,a<0? a+P:a;}
int read(){int x;scanf("%d",&x);return x;}
int f[N<<1][N][2],s[N];
int main()
{
int n=read(),m=read(),k=read(),i,j,ans=0;
f[0][0][0]=1;
for(i=1;i<=(n+m-1)/(k-1);++i)
{
s[0]=inc(f[i-1][0][1],f[i-1][0][0]);
for(j=1;j<=m;++j) s[j]=inc(s[j-1],inc(f[i-1][j][0],f[i-1][j][1]));
for(j=0;j<=m;++j)
{
f[i][j][0]=inc(f[i-1][j][0],f[i-1][j][1]);
if(j) f[i][j][1]=dec(s[j-1],(j>=k? s[j-k]:0));
}
for(j=0;j<=m;++j) if(j%(k-1)==m%(k-1)&&(i*(k-1)+1-j)%(k-1)==n%(k-1)&&i*(k-1)+1-j<=n) ans=inc(ans,f[i][j][1]);
}
printf("%d",ans);
}

AT2294 Eternal Average的更多相关文章

  1. 【AGC009E】Eternal Average

    [AGC009E]Eternal Average 题面 洛谷 题解 神仙题.jpg 我们把操作看成一棵\(k\)叉树,其中每个节点有权值,所有叶子节点(共\(n+m\)个)就是\(0\)或\(1\). ...

  2. AGC009:Eternal Average

    传送门 好神啊 直接考虑一棵 \(n+m\) 个叶子的 \(k\) 叉树,根结点权值为 \(\sum_{i\in m}(\frac{1}{k})^{deep_i}\) 对于一个 \(deep\) 的序 ...

  3. AtCoder Grand Contest 009 E:Eternal Average

    题目传送门:https://agc009.contest.atcoder.jp/tasks/agc009_e 题目翻译 纸上写了\(N\)个\(1\)和\(M\)个\(0\),你每次可以选择\(k\) ...

  4. AtCoder AGC009E Eternal Average (DP)

    题目链接 https://atcoder.jp/contests/agc009/tasks/agc009_e 题解 又被劝退了... 第一步转化非常显然: 就等价于一开始有一个数\(1\), 有\(\ ...

  5. AGC009E Eternal Average

    atc 神题orz 那个擦掉\(k\)个数然后写上一个平均值可以看成是\(k\)叉Huffman树的构造过程,每次选\(k\)个点合成一个新点,然后权值设为平均值.这些0和1都会在叶子的位置,同时每个 ...

  6. ZJOI2017 Day2

    私のZJOI Day2 2017-3-22 08:00:07 AtCoder试题选讲 SYC(Sun Yican) from Shaoxing No.1 High School 2017-3-22 0 ...

  7. AtCoder Grand Contest 009

    AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...

  8. AtCoder Grand Contest

    一句话题解 QwQ主要是因为这篇文章写的有点长……有时候要找某一个题可能不是很好找,所以写了这个东西. 具体的题意.题解和代码可以再往下翻._(:з」∠)_ AGC 001 C:枚举中点/中边. D: ...

  9. A`>G?~C009

    A`>G?~C009 这场怎么才5题...看完猫的提交记录以为猫猫没写这场F A Multiple Array 直接做 B Tournament 直接树d C Division into Two ...

随机推荐

  1. SpringBoot2.0集成Shiro

    1.shiro的三个核心概念: 1)Subject:代表当前正在执行操作的用户,但Subject代表的可以是人,也可以是任何第三方系统帐号.当然每个subject实例都会被绑定到SercurityMa ...

  2. Spring 动态多数据源

    spring springmvc mybatis 多数据源配置时的重点: 1. 注意事务拦截器的配置 Spring中的事务管理与数据源是绑定的,一旦程序执行到Service层(事务管理)的话,由于在进 ...

  3. B/S文件上传下载解决方案

    需求: 项目要支持大文件上传功能,经过讨论,初步将文件上传大小控制在20G内,因此自己需要在项目中进行文件上传部分的调整和配置,自己将大小都以20G来进行限制. PC端全平台支持,要求支持Window ...

  4. linux环境下C++写TCP通信(一)

    #include<stdio.h> #include<string.h> //tcp #include<unistd.h> #include<sys/type ...

  5. AcWing:245. 你能回答这些问题吗(线段树最大子段和)

    给定长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“1 x y”,查询区间 [x,y] 中的最大连续子段和,即 maxx≤l≤r≤ymaxx≤l≤r≤y{∑ri=lA[i]∑i=l ...

  6. Python遍历列表删除多个元素或者重复元素

    在遍历list的时候,删除符合条件的数据,结果不符合预期   num_list = [1, 2, 2, 2, 3] print(num_list) for item in num_list: if i ...

  7. TensorFlow线性回归

    目录 数据可视化 梯度下降 结果可视化 数据可视化 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ...

  8. Git:本地项目与远程仓库的git/clone

      版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_40197828/article/details/79283278 初识Git命令行将本地项 ...

  9. 非均匀B样条离散点的加密与平滑

    非均匀B样条离散点的加密与平滑 离散点的预处理是点云网格化很关键的一步,主要就是离散点的平滑.孔洞修补:本文是基于非均匀B样条基函数进行离散点云的加密和平滑的,一下为初步实现结果. 算法步骤: 1.数 ...

  10. 用layui的 form.on提交表单如何禁止刷新页面

    答:只需要在 form.on里面的底部添加return false;即可 例如: form.on('submit(component-form-demo1)', function(data){ var ...