【算法与数据结构】并查集 Disjoint Set
并查集(Disjoint Set)用来判断已有的数据是否构成环。
在构造图的最小生成树(Minimum Spanning Tree)时,如果采用 Kruskal 算法,每次添加最短路径前,需要先用并查集来判断一下这个路径是否会构成环。
思路
遍历图的每一条边,按照下面的原则将对应的两个顶点添加到集合中:
- 如果两个顶点都不属于任一集合,则创建新的集合,并将这两个顶点放入
- 如果两个顶点都已经属于某个集合,则已经构成环,退出
- 如果有一个顶点已经属于某个集合,则将另一个顶点也加入这个集合
为了代码上的统一性,可以在开始前,把所有顶点都看成只有一个元素的集合,然后就是不停的合并集合。
集合可以用树的双亲表示法来表示,只需要额外创建一个数组即可。为了简化合并操作,可以每次都只操作两颗树的根结点。
int parent[n];
// 查找树的根结点
int findRoot(int parent[], int key) {
int root = key;
while (parent[root] != -1) {
root = parent[root];
}
return root;
}
// 合并树
int unionVertex(int parent[], int x, int y) {
int lRoot = findRoot(parent, x);
int rRoot = findRoot(parent, y);
// 两个结点的根结点为同一个,则这两个结点属于同一棵树
if (lRoot == rRoot) {
return 0;
}
// 否则,合并树,这里直接把左树作为右树的子树,可能会导致不平衡
parent[lRoot] = rRoot;
}
代码
为了在每次合并时,尽可能保证树的平衡,再创建一个数组保存树的高度,合并时将高度低的树作为子树即可。
#include <stdio.h>
void init(int parent[], int height[], int count) {
int i;
for (i = 0; i < count; i++) {
parent[i] = -1;
height[i] = 0;
}
}
int findRoot(int parent[], int key) {
int root = key;
while (parent[root] != -1) {
root = parent[root];
}
return root;
}
int unionVertex(int parent[], int height[], int x, int y) {
int lRoot = findRoot(parent, x);
int rRoot = findRoot(parent, y);
if (lRoot == rRoot) {
return 0;
}
// parent[lRoot] = rRoot;
if (height[lRoot] < height[rRoot]) {
parent[lRoot] = rRoot;
} else if (height[rRoot] < height[lRoot]) {
parent[rRoot] = lRoot;
} else {
parent[lRoot] = rRoot;
height[rRoot]++;
}
return 1;
}
int main(void) {
int edgeCount = 6, vertexCount = 5;
int i;
// 图中的边
int graph[5][2] = {
{0, 1}, {2, 4}, {1, 2}, {1, 3},
{2, 5}
};
int parent[edgeCount];
int height[edgeCount];
init(parent, height, edgeCount);
for (i = 0; i < vertexCount; i++) {
int ret = unionVertex(parent, height, graph[i][0], graph[i][1]);
if (ret == 0) {
printf("%d, %d\n", graph[i][0], graph[i][1]);
printf("find cycle!\n");
return 0;
}
}
printf("no find cycle!\n");
for (i = 0; i < vertexCount; i++) {
printf("%d's parent is: %d\n", i, parent[i]);
}
for (i = 0; i < vertexCount; i++) {
printf("%d's height is: %d\n", i, height[i]);
}
return 0;
}
执行结果:
no find cycle!
0's parent is: 1
1's parent is: 4
2's parent is: 4
3's parent is: 4
4's parent is: -1
0's height is: 0
1's height is: 1
2's height is: 0
3's height is: 0
4's height is: 2
【算法与数据结构】并查集 Disjoint Set的更多相关文章
- 算法手记 之 数据结构(并查集详解)(POJ1703)
<ACM/ICPC算法训练教程>读书笔记-这一次补上并查集的部分.将对并查集的思想进行详细阐述,并附上本人AC掉POJ1703的Code. 在一些有N个元素的集合应用问题中,通常会将每个元 ...
- ACM数据结构-并查集
ACM数据结构-并查集 并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合 ...
- 【算法导论-36】并查集(Disjoint Set)具体解释
WiKi Disjoint是"不相交"的意思.Disjoint Set高效地支持集合的合并(Union)和集合内元素的查找(Find)两种操作,所以Disjoint Set中文翻译 ...
- 【数据结构】【计算机视觉】并查集(disjoint set)结构介绍
1.简述 在实现多图像无序输入的拼接中,我们先使用surf算法对任意两幅图像进行特征点匹配,每对图像的匹配都有一个置信度confidence参数,来衡量两幅图匹配的可信度,当confidence> ...
- 并查集(Disjoint Set)
在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题其特点是看似并不复杂, ...
- POJ 2421 Constructing Roads (Kruskal算法+压缩路径并查集 )
Constructing Roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19884 Accepted: 83 ...
- hdu 4641 K-string SAM的O(n^2)算法 以及 SAM+并查集优化
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4641 题意:有一个长度为n(n < 5e4)的字符串,Q(Q<=2e5)次操作:操作分为:在末 ...
- hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)
还是畅通project Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- hdu 4641K-string SAM的O(n^2)算法 以及 SAM+并查集优化
转载:http://www.cnblogs.com/hxer/p/5675149.html 题意:有一个长度为n(n < 5e4)的字符串,Q(Q<=2e5)次操作:操作分为:在末尾插入一 ...
随机推荐
- 利用urllib.urlopen向有道翻译发送数据获得翻译结果
from urllib import request,parseimport requests, sys,ssl,json ssl._create_default_https_context = ss ...
- Jmeter插件介绍
JMeterPlugin可以把JMeter生成的jtl文件做出很好的统计图,同时还支持机器的cpu.memory.swap.disk io和network的监控. 插件可分四类: 用于服务器性能监视的 ...
- px2rem在vue项目中的使用
使用方式: 1.安装 cnpm install px2rem-loader2. https://www.npmjs.com/package/px2rem-loader module.exports = ...
- 《Head First 软件开发》阅读六
软件错误:专业排错 你编写的代码,你的责任.处理错误的方法和其他流程一样,准备好白板.让客户参与.满怀信心的估计.重构与预构. 首先是与客户加强沟通,不管是谁的代码,在自己的系统里就是自己的代码.使代 ...
- pt-align的用法简要记录
pt-align的用法简要记录 1.pt-align 功能:将其它工具的输出按列对齐用法:pt-align [FILES]如果没有指定文件,则默认读取标准输入的内容. 2.例如: [root@dbte ...
- requestAnimationFram
window.requestAnimationFrame() 告诉浏览器——你希望执行一个动画,并且要求浏览器在下次重绘之前调用指定的回调函数更新动画.该方法需要传入一个回调函数作为参数,该回调函数会 ...
- MYSQL安装失败,一打开就出现MySQL-Workbench已停止工作
1.由于系统重新安装,环境都是新的,出现MySQL-Workbench已停止工作 解决:下载 微软常用运行库合集 安装即可
- BZOJ 4289: PA2012 Tax Dijkstra + 查分
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
- CodeForces 1200D White Lines
cf题面 Time limit 1500 ms Memory limit 262144 kB 解题思路 官方题解 1200D - White Lines Let's consider a single ...
- CodeForces 1100F Ivan and Burgers
CodeForces题面 Time limit 3000 ms Memory limit 262144 kB Source Codeforces Round #532 (Div. 2) Tags da ...