Harry Potter新学了一种魔法:可以改变树上的果子个数。满心欢喜的他找到了一个巨大的果树,来试验他的新法
术。这棵果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u],保证有fa[u]<u。初始时,这棵果
树上的果子都被Dumbledore用魔法清除掉了,所以这个果树的每个节点都没有果子(即0个果子)不幸的是,Harry
的法术学得不到位,只能对树上一段路径的节点上的果子个数统一增加一定的数量。也就是说,Harry的魔法可以
这样描述:Add u v d,表示将节点u和v之间的路径上的所有节点的果子个数都加上d。接下来,为了方便检验Harr
y的魔法是否成功,你需要告诉他在释放魔法的过程中的一些有关果树的信息:Query u,表示当前果树中,以点u
为根的子树中,总共有多少个果子?
Input
第一行一个整数N(1≤N≤100000),表示果树的节点总数,节点以0,1,...,N-1标号,0一定代表根节点。
接下来N-1行,每行两个整数a,b(0≤a接下来是一个整数Q(1≤Q≤100000),表示共有Q次操作。
后面跟着Q行,每行是以下两种中的一种:
1. A u v d,表示将u到v的路径上的所有节点的果子数加上d;(0≤u,v≤N-1,0<d<100000)
2. Q u,表示询问以u为根的子树中的总果子数,注意包括u本身的。(0≤u≤N-1)
1≤N≤100000,1≤Q≤100000
Output
输出询问的答案。
Sample Input
4
0 1
1 2
2 3
4
A 1 3 1
Q 0
Q 1
Q 2
Sample Output
3
3
2

//记下dfs序,就知道子树的范围了
//对一段范围进行加值,lazy操作
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
#include <math.h>
#include <vector>
using namespace std; typedef long long ll;
const int N=100001; int e[N*2],nxt[N*2],head[N];
int dep[N],fa[N],siz[N],w[N],top[N],son[N],End[N]; struct A{
ll sum,tag;
}t[N*4]; int n,C=0,edge=0;
void add(int x,int y)
{
e[++edge]=y;
nxt[edge]=head[x];
head[x]=edge;
} void dfs1(int x,int f,int d)
{//求size,dep,son,fa
dep[x]=d;fa[x]=f;siz[x]=1;
int i,tp=0;
for(i=head[x];i;i=nxt[i])
if(e[i]!=fa[x])
{
dfs1(e[i],x,d+1);
siz[x]+=siz[e[i]];
if(siz[e[i]]>tp){tp=siz[e[i]];son[x]=e[i];}
}
} void dfs2(int x,int tp)
{//求dfs序,链的顶端节点
w[x]=++C;
top[x]=tp;
if(son[x])
dfs2(son[x],top[x]);
for(int i=head[x];i;i=nxt[i])
if(e[i]!=son[x]&&e[i]!=fa[x])
dfs2(e[i],e[i]);
End[x]=C;//x所在子树的最大dfs序
} void build(int x,int l,int r)
{//建立线段树
t[x].tag=t[x].sum=0;
if(l==r) return;
int M=l+r>>1;
build(x<<1,l,M);
build(x<<1|1,M+1,r);
} void pushdown(int x,int l,int r)
{//在线段树中下传标记
if(t[x].tag)
{
t[x<<1].tag+=t[x].tag;
t[x<<1|1].tag+=t[x].tag;
int M=l+r>>1;
t[x<<1].sum+=(M-l+1)*t[x].tag;
t[x<<1|1].sum+=(r-M)*t[x].tag;
t[x].tag=0;
}
} void update(int x,int l,int r,int ql,int qr,int v)
{//在线段树中更新[ql,qr]节点权值加v
if(ql<=l&&qr>=r)
{
t[x].sum+=(r-l+1)*v;
t[x].tag+=v;
return;
}
pushdown(x,l,r);
int M=l+r>>1;
if(ql<=M)
update(x<<1,l,M,ql,qr,v);
if(qr>M)
update(x<<1|1,M+1,r,ql,qr,v);
t[x].sum=t[x<<1].sum+t[x<<1|1].sum;
} ll query(int x,int l,int r,int ql,int qr)
{//在线段树中查询[ql,qr]的权值和
if(ql<=l&&qr>=r) return t[x].sum;
pushdown(x,l,r);
int M=l+r>>1;ll sum=0;
if(ql<=M) sum+=query(x<<1,l,M,ql,qr);
if(qr>M) sum+=query(x<<1|1,M+1,r,ql,qr);
return sum;
} void upd(int x,int y,int z)
{//修改操作,见课件
int f1=top[x],f2=top[y],tmp;
while(f1!=f2)
{
if(dep[f1]<dep[f2])
{
tmp=f1;f1=f2;f2=tmp;
tmp=x;x=y;y=tmp;
}
update(1,1,n,w[f1],w[x],z);
x=fa[f1];
f1=top[x];
}
if(dep[x]<dep[y]){tmp=x;x=y;y=tmp;}
update(1,1,n,w[y],w[x],z); //注意这一句,本题是对点权进行操作
} int main()
{
int i,x,y,m,z;char c;
scanf("%d",&n);
for(i=1;i<n;i++)
{
scanf("%d %d",&x,&y);x++;y++;
add(x,y);
add(y,x);
}
dfs1(1,-1,1);
dfs2(1,1);
build(1,1,n);
scanf("%d",&m);
for(i=1;i<=m;i++)
{
scanf("\n%c",&c);
if(c=='A')
{
scanf("%d %d %d",&x,&y,&z);x++;y++;
upd(x,y,z);
}
else
{
scanf("%d",&x);//统计以x为根的子树的权值
x++;
printf("%lld\n",query(1,1,n,w[x],End[x]));
}
}
return 0;
}

  

shoi 魔法树的更多相关文章

  1. noip模拟赛(一)魔法树

    魔法树 (mahou.pas/c/cpp) [问题描述] 魔法使moreD在研究一棵魔法树. 魔法树顾名思义,这货是一棵树,奇葩的是魔法树上的每一条边都拥有一个魔法属性,如果不那么奇葩就不是moreD ...

  2. [SHOI 2012] 魔法树

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2836 [算法] 树链剖分 时间复杂度 : O(NlogN ^ 2) [代码] #in ...

  3. 洛谷 3833 SHOI 2012 魔法树

    [题解] 树链剖分模板题.. #include<cstdio> #include<algorithm> #include<queue> #define N 5000 ...

  4. [bzoj2836] 魔法树

    俩操作:增加路径上的点的权值.查询子树的权值和. 想了想似乎只能树链剖分了..好久没写链剖+数据结构了TAT 一开始没开LL炸了一发(明明有想到的..我果然是傻逼= = #include<cst ...

  5. P3833 [SHOI2012]魔法树

    思路 树剖板子 注意给出点的编号是从零开始的 代码 #include <cstdio> #include <algorithm> #include <cstring> ...

  6. [洛谷P3833][SHOI2012]魔法树

    题目大意:给一棵树,路径加,子树求和 题解:树剖 卡点:无 C++ Code: #include <cstdio> #include <iostream> #define ma ...

  7. 【树链剖分】【dfs序】【线段树】bzoj2836 魔法树

    这道题告诉我们:树链剖分的重标号就是dfs序. #include<cstdio> #include<algorithm> using namespace std; #defin ...

  8. 树链剖分【洛谷P3833】 [SHOI2012]魔法树

    P3833 [SHOI2012]魔法树 题目描述 Harry Potter 新学了一种魔法:可以让改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的新法术. 这棵果树共有N个节点,其中节 ...

  9. 树链剖分【P3833】 [SHOI2012]魔法树

    Description Harry Potter 新学了一种魔法:可以让改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的新法术. 这棵果树共有N个节点,其中节点0是根节点,每个节点u的 ...

随机推荐

  1. The Python Challenge 闯关笔记

    The Python Challenge : http://www.pythonchallenge.com/ Level 0: 看提示图片中为2**38,计算值为274877906944. Hint: ...

  2. JavaScript调试技巧之断点调试

    首先,在各个浏览器中,断点调试支持的最好的当然是Firefox,Firefox不仅可以使用Firebug调试页面js脚本,还可以用高级调试工具例如JavaScript Debugger (Venkma ...

  3. ZROI 19.07.29 线性代数入门/wq

    1.高斯消元 在模意义下依然有效,对主元求逆即可. 甚至可以模合数,需要对两个方程辗转相除,复杂度\(O(n^3\log p)\). 辗转相除法只要能定义带余除法就有效. 逆矩阵:对于矩阵\(A\), ...

  4. mysql<七>

    -- ########## 01.集合逻辑 ########## -- MySQL中,只实现了一种集合逻辑:逻辑与,有两种用法:UNION 和 UNION ALL -- 临时表1 CREATE TAB ...

  5. JAVA笔记14-线程

    一.概念 线程:是一个程序里面不同的执行路径,每一个分支都叫线程.到现在为止我们所讲的程序分支只有一个,即main方法,称作主线程. 进程:class文件,exe文件.程序的执行过程:程序放入代码区( ...

  6. POJ 2528 Mayor’s posters (线段树段替换 && 离散化)

    题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000).求出最后还能看见多少张海报. 分析 ...

  7. codevs 1079 回家x

    1079 回家  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver   题目描述 Description 现在是晚餐时间,而母牛们在外面分散的牧场中. 农民约翰 ...

  8. The GuidRepresentation for the reader is CSharpLegacy, which requires the binary sub type to be Uuid

    使用客户端链接MongoDb报错 The GuidRepresentation for the reader is CSharpLegacy, which requires the binary su ...

  9. (49)LINUX应用编程和网络编程之四 Linux进程全解

    补充: 1.  C程序的执行过程: C编译器调用链接器,链接器设置可执行程序文件的启动起始地址(启动例程),启动例程获得内核传递来的 命令行参数和环境变量值,为调用main函数做准备.[实际上该启动例 ...

  10. 利用 clipboardData 在网页中实现截屏粘贴的功能

    <!DOCTYPE HTML> <html lang="en-US"> <head> <meta charset="UTF-8& ...