令$f(x)=\frac{x^{2}+c}{x}$,换言之即$x$物品的性价比的倒数

对其求导即$f'(x)=1-\frac{c}{x^{2}}$,其导数严格递增,换言之即是一个严格下凸函数,记$x_{0}$为其最小值的位置,那么不难证明$x_{0}=\lfloor\sqrt{c}\rfloor$或$\lceil\sqrt{c}\rceil$

性质1:存在最优解,使得其不存在一个$x\ge 2x_{0}$的物品

对于$x\ge 2x_{0}$的物品,考虑拆分为$x_{0}+(x-x_{0})$,代入化简即求证$2x_{0}(x-x_{0})\ge c$,由于$x\ge 2x_{0}$,即要求$2x_{0}^{2}\ge c$,显然成立

性质2:存在最优解,使得不存在若干个体积非$x_{0}$的物品,且体积和为$x_{0}$的倍数

将这些物品用若干个$x_{0}$来代替是不劣的——

从性价比的角度来考虑,对于两个物品合并后的性价比显然在合并前两物品的性价比区间中

由于$x_{0}$的性价比最大(性价比倒数最小),因此其余物品合并后性价比一定不超过$x_{0}$,而仅含有$x_{0}$的话一定恰好为$x_{0}$的性价比,即不劣

推论1:存在最优解,使得不存在$x_{0}$个体积非$x_{0}$的物品

对于$x_{0}$个物品,必然会存在一个子集使得其体积和为$x_{0}$的倍数

推论2:存在最优解,使得体积非$x_{0}$的物品和不超过$3c$

根据推论1,至多$x_{0}-1$个物品,根据性质1,每一个物品体积不超过$2x_{0}-1$,显然$(x_{0}-1)(2x_{0}-1)\le 3c$,即成立

设$V$是需要填充的体积($\max(k-a_{i},0)$),对$V\le 3c$用背包预处理,复杂度为$o(c\sqrt{c})$(物品体积小于$2x_{0}$),接下来考虑$V>3c$的问题:

性质3:存在一组最优解,使得其至多选择两种体积的物品,且为$x$和$x+1$

当我们同时选择了$x$和$y$两个物品,且满足$x+1\le y-1$,根据凸性(或代入展开),不难得到选择$x+1$和$y-1$一定不劣,即可以使得其不存在

推论3:当$V>3c$,$x=x_{0}$或$x_{0}-1$

若$x\ne x_{0}$或$x_{0}-1$,即$x_{0}\notin \{x,x+1\}$,那么即不为$x_{0}$的物品体积和大于了$3c$,矛盾

以$x=x_{0}$为例,先选择$s$个$x_{0}$,再将其中$V-sx_{0}$个个物品变为$x_{0}+1$,由于$x_{0}+1$的物品个数要小于$x_{0}$(根据推论1),因此是$s$是唯一的

通过上述,我们填充$V$体积的最优解可以$o(1)$得到,复杂度为$o(c\sqrt{c}+nq)$,无法通过

接下来,由于$k$和$a_{i}$是随机的,因此$V\le 3c$的概率为$o(\frac{c}{1e9})$,对于这一类暴力统计,复杂度为$o(c\sqrt{c}+\frac{nqc}{1e9})$(具体可以将$k$排序后利用单调性来找)

对于$V>3c$的情况,继续分析不难发现答案即
$$
(x_{0}^{2}+c)\frac{V-r}{x_{0}}+\min((2x_{0}+1)r,(x_{0}^{2}+c)+(x_{0}-r)(2x_{0}-1))
$$
(其中$V\equiv r(mod\ x_{0})$且$0\le r<x_{0}$)

后者仅与$r$有关,利用单调性,维护出$a_{i}$模$x_{0}$的每一类中的个数以及$V$的和,即可做到$o(q\sqrt{c})$的复杂度

最终总复杂度为$o(c\sqrt{c}+\frac{nqc}{1e9}+q\sqrt{c})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define C 10005
5 #define X0 105
6 #define ll long long
7 #define fi first
8 #define se second
9 pair<int,int>q[N];
10 int t,n,c,m,x0,a[N],f[C*3],sum1[X0];
11 ll sum2[X0],ans[N];
12 int cost(int k){
13 return 1LL*k*k+c;
14 }
15 int calc(int k){
16 return min((2*x0+1)*k,cost(x0)-(x0-k)*(2*x0-1));
17 }
18 int main(){
19 scanf("%d",&t);
20 for(int ii=1;ii<=t;ii++){
21 scanf("%d%d%d",&n,&c,&m);
22 x0=(int)sqrt(c);
23 if (cost(x0)*(x0+1)>cost(x0+1)*x0)x0++;
24 memset(f,0x3f,sizeof(f));
25 f[0]=0;
26 for(int i=1;i<2*x0;i++)
27 for(int j=i;j<=3*c;j++)f[j]=min(f[j],f[j-i]+cost(i));
28 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
29 sort(a+1,a+n+1);
30 for(int i=1;i<=m;i++){
31 scanf("%d",&q[i].fi);
32 q[i].se=i;
33 }
34 sort(q+1,q+m+1);
35 memset(sum1,0,sizeof(sum1));
36 memset(sum2,0,sizeof(sum2));
37 memset(ans,0,sizeof(ans));
38 for(int i=1,l=1,r=1;i<=m;i++){
39 while ((l<=n)&&(a[l]<q[i].fi-3*c)){
40 sum1[a[l]%x0]++;
41 sum2[a[l]%x0]+=a[l];
42 l++;
43 }
44 while ((r<=n)&&(a[r]<=q[i].fi))r++;
45 for(int j=l;j<r;j++)ans[q[i].se]+=f[q[i].fi-a[j]];
46 for(int j=0;j<x0;j++){
47 int jj=(q[i].fi-j)%x0;
48 ans[q[i].se]+=1LL*sum1[j]*calc(jj)+(1LL*sum1[j]*(q[i].fi-jj)-sum2[j])/x0*cost(x0);
49 }
50 }
51 printf("Case #%d:\n",ii);
52 for(int i=1;i<=m;i++)printf("%lld\n",ans[i]);
53 }
54 }

[gym102822I]Invaluable Assets的更多相关文章

  1. Yii2 assets注册的css样式文件没有加载

    准备引入layui.css文件的,在LayuiAssets类中已经配置了资源属性 <?php namespace frontend\assets; use yii\web\AssetBundle ...

  2. Liquid Exception: Included file '_includes/customizer-variables.html' not found in assets/bootstrap/docs/customize.html 解决方案

    执行下面这句话即可 rm -rf source/assets/bootstrap/docs/

  3. com.android.build.api.transform.TransformException: com.android.builder.packaging.DuplicateFileException: Duplicate files copied in APK assets/com.xx.xx

    完整的Error 信息(关键部分) Error:Execution failed for task ':fanwe_o2o_47_mgxz_dingzhi:transformResourcesWith ...

  4. Android之assets资源

    assets目录下存放的原生资源文件,通过getAssets()方法获取. 使用: InputStream inputStream; try { inputStream = getAssets().o ...

  5. android raw和assets的区别

    *res/raw和assets的相同点: 1.两者目录下的文件在打包后会原封不动的保存在apk包中,不会被编译成二进制. *res/raw和assets的不同点: 1**.res/raw中的文件会被映 ...

  6. iOS 苹果开发证书失效的解决方案(Failed to locate or generate matching signing assets)

    从2月14日开始,上传程序的同学可能会遇到提示上传失败的提示. 并且打开自己的钥匙串,发现所有的证书全部都显示此证书签发者无效. 出现以下情况: Failed to locate or generat ...

  7. ERROR ITMS-90682: Invalid Bundle - The asset catalog at 'Payload/XXXXX/Assets.car' can't contain 16-bit or P3 assets if the app supports iOS 9.3 or earlier.

    刚升级Xcode 8, 幺蛾子又出现了.提交的时候出了这个问题. BTW,感谢google.以下为解决方案:‘ 在 Xcode 8 中,当你资源文件中[含有16位图]或者[图片显示模式γ值为'P3'] ...

  8. [iOS]坑爹的ALAsset(Assets Library Framework)

    Assets Library Framework 可以用来做iOS上的多选器,选照片视频啥的啦就不介绍了. 目前的项目有点类似dropbox,可以选择设备内的照片然后帮你上传文件,使用了Assets ...

  9. assets 加载资源文件

    引用:http://abc20899.iteye.com/blog/1096620 1.获取资源的输入流 资源文件 sample.txt 位于 $PROJECT_HOME/assets/ 目录下,可以 ...

随机推荐

  1. 11.5.2 LVS-NAT 实验

    NAT拓扑 lvs-server VIP:10.211.55.99DIP:10.37.129.99 负载均衡器 开启路由功能(VIP桥接,DIP仅主机) rs01 RIP:10.37.129.3 后端 ...

  2. oracle查看和修改session和最大连接数

    第一步,在cmd命令行,输入sqlplus 第二步,根据提示输入用户名与密码 1. 查看processes和sessions参数 SQL> show parameter processes NA ...

  3. pycharm中设置自己的文件模板

    File>>Settings>>Editor>>File and Code Templates 选择文件类型Python Scripts,输入文件模板类型 #!/u ...

  4. Ajax样例

    $.ajax({ url : "newsservlet",//请求地址 dataType : "json",//数据格式 type : "post&q ...

  5. 【二食堂】Alpha - 事后分析

    事后分析 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? Alpha阶段要解决的问题是:根据用户标注的信息完成知识图谱的生成渲染.要解决的问题定义得比较 ...

  6. BUAA_2020_软件工程_个人博客作业

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业 我在这个课程的目标是 了解软件工程的技术,掌握工程化开发的能力 这个作业在哪个具体方 ...

  7. js基础学习之"=="与"==="的区别

    var a = 1; var b = 1; var c = "1"; 1. "==" 可理解为相等运算符.相等运算符比较时,会自己进行类型转换,等于什么类型就会 ...

  8. 2021.10.15考试总结[NOIP模拟77]

    \(n=40\)考虑\(meet \;in \;the \;middle\) 某个元素有关的量只有一个时考虑转化为树上问题 对暴力有自信,相信数据有梯度 没了 UPD:写了个略说人话的. T1 最大或 ...

  9. 色彩滤镜矩阵(Color Filter Array)

    数码相机上的每个象素都带有一个光感应器,用以测量光线的明亮程度.由于光电二极管是只支持单颜色的装置,它不能区别不同波长的光线.因此,数码相机工程师在相机感应器的上部装上了一套镶嵌式的颜色滤镜,一个颜色 ...

  10. PCB电路板元器件布局的一般原则*(转)

    PCB电路板元器件布局的一般原则: 设计人员在PCB电路板布局过程中需要遵循的一般原则如下. (1)元器件最好单面放置.如果需要双面放置元器件,在底层(Bottom Layer)放置插针式元器件, ) ...