令$f(x)=\frac{x^{2}+c}{x}$,换言之即$x$物品的性价比的倒数

对其求导即$f'(x)=1-\frac{c}{x^{2}}$,其导数严格递增,换言之即是一个严格下凸函数,记$x_{0}$为其最小值的位置,那么不难证明$x_{0}=\lfloor\sqrt{c}\rfloor$或$\lceil\sqrt{c}\rceil$

性质1:存在最优解,使得其不存在一个$x\ge 2x_{0}$的物品

对于$x\ge 2x_{0}$的物品,考虑拆分为$x_{0}+(x-x_{0})$,代入化简即求证$2x_{0}(x-x_{0})\ge c$,由于$x\ge 2x_{0}$,即要求$2x_{0}^{2}\ge c$,显然成立

性质2:存在最优解,使得不存在若干个体积非$x_{0}$的物品,且体积和为$x_{0}$的倍数

将这些物品用若干个$x_{0}$来代替是不劣的——

从性价比的角度来考虑,对于两个物品合并后的性价比显然在合并前两物品的性价比区间中

由于$x_{0}$的性价比最大(性价比倒数最小),因此其余物品合并后性价比一定不超过$x_{0}$,而仅含有$x_{0}$的话一定恰好为$x_{0}$的性价比,即不劣

推论1:存在最优解,使得不存在$x_{0}$个体积非$x_{0}$的物品

对于$x_{0}$个物品,必然会存在一个子集使得其体积和为$x_{0}$的倍数

推论2:存在最优解,使得体积非$x_{0}$的物品和不超过$3c$

根据推论1,至多$x_{0}-1$个物品,根据性质1,每一个物品体积不超过$2x_{0}-1$,显然$(x_{0}-1)(2x_{0}-1)\le 3c$,即成立

设$V$是需要填充的体积($\max(k-a_{i},0)$),对$V\le 3c$用背包预处理,复杂度为$o(c\sqrt{c})$(物品体积小于$2x_{0}$),接下来考虑$V>3c$的问题:

性质3:存在一组最优解,使得其至多选择两种体积的物品,且为$x$和$x+1$

当我们同时选择了$x$和$y$两个物品,且满足$x+1\le y-1$,根据凸性(或代入展开),不难得到选择$x+1$和$y-1$一定不劣,即可以使得其不存在

推论3:当$V>3c$,$x=x_{0}$或$x_{0}-1$

若$x\ne x_{0}$或$x_{0}-1$,即$x_{0}\notin \{x,x+1\}$,那么即不为$x_{0}$的物品体积和大于了$3c$,矛盾

以$x=x_{0}$为例,先选择$s$个$x_{0}$,再将其中$V-sx_{0}$个个物品变为$x_{0}+1$,由于$x_{0}+1$的物品个数要小于$x_{0}$(根据推论1),因此是$s$是唯一的

通过上述,我们填充$V$体积的最优解可以$o(1)$得到,复杂度为$o(c\sqrt{c}+nq)$,无法通过

接下来,由于$k$和$a_{i}$是随机的,因此$V\le 3c$的概率为$o(\frac{c}{1e9})$,对于这一类暴力统计,复杂度为$o(c\sqrt{c}+\frac{nqc}{1e9})$(具体可以将$k$排序后利用单调性来找)

对于$V>3c$的情况,继续分析不难发现答案即
$$
(x_{0}^{2}+c)\frac{V-r}{x_{0}}+\min((2x_{0}+1)r,(x_{0}^{2}+c)+(x_{0}-r)(2x_{0}-1))
$$
(其中$V\equiv r(mod\ x_{0})$且$0\le r<x_{0}$)

后者仅与$r$有关,利用单调性,维护出$a_{i}$模$x_{0}$的每一类中的个数以及$V$的和,即可做到$o(q\sqrt{c})$的复杂度

最终总复杂度为$o(c\sqrt{c}+\frac{nqc}{1e9}+q\sqrt{c})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define C 10005
5 #define X0 105
6 #define ll long long
7 #define fi first
8 #define se second
9 pair<int,int>q[N];
10 int t,n,c,m,x0,a[N],f[C*3],sum1[X0];
11 ll sum2[X0],ans[N];
12 int cost(int k){
13 return 1LL*k*k+c;
14 }
15 int calc(int k){
16 return min((2*x0+1)*k,cost(x0)-(x0-k)*(2*x0-1));
17 }
18 int main(){
19 scanf("%d",&t);
20 for(int ii=1;ii<=t;ii++){
21 scanf("%d%d%d",&n,&c,&m);
22 x0=(int)sqrt(c);
23 if (cost(x0)*(x0+1)>cost(x0+1)*x0)x0++;
24 memset(f,0x3f,sizeof(f));
25 f[0]=0;
26 for(int i=1;i<2*x0;i++)
27 for(int j=i;j<=3*c;j++)f[j]=min(f[j],f[j-i]+cost(i));
28 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
29 sort(a+1,a+n+1);
30 for(int i=1;i<=m;i++){
31 scanf("%d",&q[i].fi);
32 q[i].se=i;
33 }
34 sort(q+1,q+m+1);
35 memset(sum1,0,sizeof(sum1));
36 memset(sum2,0,sizeof(sum2));
37 memset(ans,0,sizeof(ans));
38 for(int i=1,l=1,r=1;i<=m;i++){
39 while ((l<=n)&&(a[l]<q[i].fi-3*c)){
40 sum1[a[l]%x0]++;
41 sum2[a[l]%x0]+=a[l];
42 l++;
43 }
44 while ((r<=n)&&(a[r]<=q[i].fi))r++;
45 for(int j=l;j<r;j++)ans[q[i].se]+=f[q[i].fi-a[j]];
46 for(int j=0;j<x0;j++){
47 int jj=(q[i].fi-j)%x0;
48 ans[q[i].se]+=1LL*sum1[j]*calc(jj)+(1LL*sum1[j]*(q[i].fi-jj)-sum2[j])/x0*cost(x0);
49 }
50 }
51 printf("Case #%d:\n",ii);
52 for(int i=1;i<=m;i++)printf("%lld\n",ans[i]);
53 }
54 }

[gym102822I]Invaluable Assets的更多相关文章

  1. Yii2 assets注册的css样式文件没有加载

    准备引入layui.css文件的,在LayuiAssets类中已经配置了资源属性 <?php namespace frontend\assets; use yii\web\AssetBundle ...

  2. Liquid Exception: Included file '_includes/customizer-variables.html' not found in assets/bootstrap/docs/customize.html 解决方案

    执行下面这句话即可 rm -rf source/assets/bootstrap/docs/

  3. com.android.build.api.transform.TransformException: com.android.builder.packaging.DuplicateFileException: Duplicate files copied in APK assets/com.xx.xx

    完整的Error 信息(关键部分) Error:Execution failed for task ':fanwe_o2o_47_mgxz_dingzhi:transformResourcesWith ...

  4. Android之assets资源

    assets目录下存放的原生资源文件,通过getAssets()方法获取. 使用: InputStream inputStream; try { inputStream = getAssets().o ...

  5. android raw和assets的区别

    *res/raw和assets的相同点: 1.两者目录下的文件在打包后会原封不动的保存在apk包中,不会被编译成二进制. *res/raw和assets的不同点: 1**.res/raw中的文件会被映 ...

  6. iOS 苹果开发证书失效的解决方案(Failed to locate or generate matching signing assets)

    从2月14日开始,上传程序的同学可能会遇到提示上传失败的提示. 并且打开自己的钥匙串,发现所有的证书全部都显示此证书签发者无效. 出现以下情况: Failed to locate or generat ...

  7. ERROR ITMS-90682: Invalid Bundle - The asset catalog at 'Payload/XXXXX/Assets.car' can't contain 16-bit or P3 assets if the app supports iOS 9.3 or earlier.

    刚升级Xcode 8, 幺蛾子又出现了.提交的时候出了这个问题. BTW,感谢google.以下为解决方案:‘ 在 Xcode 8 中,当你资源文件中[含有16位图]或者[图片显示模式γ值为'P3'] ...

  8. [iOS]坑爹的ALAsset(Assets Library Framework)

    Assets Library Framework 可以用来做iOS上的多选器,选照片视频啥的啦就不介绍了. 目前的项目有点类似dropbox,可以选择设备内的照片然后帮你上传文件,使用了Assets ...

  9. assets 加载资源文件

    引用:http://abc20899.iteye.com/blog/1096620 1.获取资源的输入流 资源文件 sample.txt 位于 $PROJECT_HOME/assets/ 目录下,可以 ...

随机推荐

  1. CI/CD-企业级DevOps

    CI/CD-企业级DevOps 什么是DevOps? DevOps是一种思想或方法论,它涵盖开发.测试.运维的整个过程! DevOps强调软件开发人员与软件测试.软件运维.质量保障(QA) 部门之间有 ...

  2. 洛谷4606 SDOI2018战略游戏(圆方树+虚树)

    QWQ深受其害 当时在现场是真的绝望...... 现在再重新来看这个题 QWQ 根据题目所说,我们可以发现,对于每一个集合中的节点,我们实际上就是要求两两路径上的割点的数目 考虑到又是关于点双的题目, ...

  3. vue基本指令与脚手架基本配置

    脚手架(@vue/cli)创建项目启动服务 1.创建项目 vue create 项目名字 2.启动项目 进入项目根目录,运行以下命令 yarn serve 3.脚手架目录代码分析 ├── node_m ...

  4. windows环境下基于pycharm安装Redis出现的两个错误解决方案

    说明:下面给出的两个链接是解决安装和使用Redis的时候遇到的两个问题参考的博客网址,本文有解释不清楚的地方可以原博客查看,侵权删! Q1参考链接-https://blog.csdn.net/maqu ...

  5. javascript-jquery选择器

    jquery选择器用来获得jquery对象 我们用一个实例来演示jquery与原生的区别 <div id="title">123</div>原生获得元素的方 ...

  6. Golang通脉之类型定义

    自定义类型 在Go语言中有一些基本的数据类型,如string.整型.浮点型.布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型. type是Go语法里的重要而且常用的关键字,type绝 ...

  7. 【UE4 设计模式】状态模式 State Pattern

    概述 描述 允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎修改了它的类. 其别名为状态对象(Objects for States),状态模式是一种对象行为型模式. 有限状态机(FSMs) ...

  8. 如何访问位于内网的Ubuntu主机

    如何访问位于内网的Ubuntu主机 内网主机为Ubuntu桌面版 内网主机Ubuntu字符串界面版 SSH远程主机管理工具推荐 SSH远程文件访问工具推荐 如何访问位于内网的Ubuntu主机 内网主机 ...

  9. Java正则中"\\\\"表示普通反斜杠

    Java中"\"用于转义字符,"\\"表示普通无转义功能的反斜杠. 如果将字符串当做正则表达式来解析,那么"\\"也有了特殊意义,它与其后的 ...

  10. 注解,@Qualifier+@Autowired 和 @Resource

    摘要: 项目中,对于AOP的使用,就是通过用注解来注入的. 更改之前的注解,是使用:@Qualifier+@Autowired   但是,通过这样注解,在项目启动阶段,需要自动扫描的过程是非常缓慢的, ...