记操作序列为$S$,令$h(S)\equiv \sum_{i}a_{i}x^{i}(mod\ p)$(其中$a_{i}$为操作后的结果)

(以下我们将$S$看作字符串,相邻即拼接操作)

对于操作,有$h(1S)=xh(S)$,$h(3S)=h(S)+1$(另外两种操作类似),这可以看作一个函数,即定义函数$g_{S_{1}}(h(S_{2}))=h(S_{1}S_{2})$

令$s[i,j]$表示操作序列的区间$[i,j]$的子串,则有$g_{s[1,i)}h(s[i,j])=h([1,j])$,同时区间$[i,j]$合法当且仅当$h(s[i,j])=h[s(1,n)]$,即等价于$pre_{j}=g_{s[1,i)}(pre_{n})$(其中$pre_{j}=h(s[1,j])$)

发现右边仅与$i$有关,倒序枚举$i$求出该值,然后在$[i,n]$中找到相同的$pre_{j}$数量,可以用map维护,时间复杂度为$o(n\log_{2}n)$

(后面的值计算可能比较麻烦,可以将$s[1,i)$中的位移和权值拆开来计算)

考虑哈希冲突的概率,假设$x$为变量,那么$h(S)$就是一个关于$x$的函数,且其次数至多为$2n$(算上负幂次),因此$h(S_{1})=h(S_{2})$也就是一个$2n$次的同余方程,由于$p$为大素数,解数量基本为$2n$个

假设选择了$k$个$x$,而$2n$个解就会使得$(2n)^{k}$组$x$不合法,共要判断$o(n^{2})$对哈希值,即会使得$o(n^{2}(2n)^{k})$(同样忽略此处相同)组$x$不合法

对于总共$p^{k}$种,不能选$n^{2}(2n)^{k}$种,即不合法概率为$n^{2}(\frac{2n}{p})^{k}$,取$k=6$,$p$~$10^{9}$可以基本避免冲突

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 250005
4 #define mod 1000000007
5 struct ji{
6 int a[6];
7 bool operator < (const ji &k)const{
8 for(int i=0;i<6;i++)
9 if (a[i]!=k.a[i])return a[i]<k.a[i];
10 return 0;
11 }
12 }o,a[N];
13 map<ji,int>mat;
14 int n,p[N],mi[6][N],mi_inv[6][N],x[6]={998244311,998244341,998244353,998244389,998244391,998244397};
15 long long ans;
16 char s[N];
17 int ksm(int n,int m){
18 if (!m)return 1;
19 int s=ksm(n,m>>1);
20 s=1LL*s*s%mod;
21 if (m&1)s=1LL*s*n%mod;
22 return s;
23 }
24 int calc(int p,int k){
25 if (k>=0)return mi[p][k];
26 return mi_inv[p][-k];
27 }
28 int main(){
29 scanf("%d%s",&n,s);
30 for(int i=0;i<5;i++){
31 mi[i][0]=1;
32 for(int j=1;j<=n;j++)mi[i][j]=1LL*mi[i][j-1]*x[i]%mod;
33 mi_inv[i][1]=ksm(x[i],mod-2);
34 for(int j=2;j<=n;j++)mi_inv[i][j]=1LL*mi_inv[i][j-1]*mi_inv[i][1]%mod;
35 }
36 p[0]=0;
37 for(int i=1;i<=n;i++){
38 p[i]=p[i-1];
39 a[i]=a[i-1];
40 if (s[i-1]=='<')p[i]--;
41 if (s[i-1]=='>')p[i]++;
42 if (s[i-1]=='+')
43 for(int j=0;j<6;j++)a[i].a[j]=(a[i].a[j]+calc(j,p[i]))%mod;
44 if (s[i-1]=='-')
45 for(int j=0;j<6;j++)a[i].a[j]=(a[i].a[j]+mod-calc(j,p[i]))%mod;
46 }
47 for(int i=n;i;i--){
48 for(int j=0;j<6;j++)o.a[j]=(1LL*a[n].a[j]*calc(j,p[i-1])+a[i-1].a[j])%mod;
49 mat[a[i]]++;
50 ans+=mat[o];
51 }
52 printf("%lld",ans);
53 }

[atARC099F]Eating Symbols Hard的更多相关文章

  1. Atcoder 乱做

    最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...

  2. 【AtCoder】ARC099题解

    C - Minimization 每次操作必然包含一个1 枚举第一次操作的位置计算两边即可 代码 #include <bits/stdc++.h> #define fi first #de ...

  3. AtCoder Regular Contest 99

    传送门 C - Minimization 第一次可能有多种选择,我们枚举所有的选择,然后两边贪心取即可. Code #include <bits/stdc++.h> #define MP ...

  4. Undefined symbols for architecture arm64解决方案

    在iOS开发中经常遇到的一个错误是Undefined symbols for architecture arm64,这个错误表示工程某些地方不支持arm64指令集.那我们应该怎么解决这个问题了?我们不 ...

  5. Clang: Undefined symbols, but it is there using nm.

    https://stackoverflow.com/questions/36662920/xcode-clang-link-build-dynamic-framework-or-dylib-not-e ...

  6. 转载:《TypeScript 中文入门教程》 16、Symbols

    版权 文章转载自:https://github.com/zhongsp 建议您直接跳转到上面的网址查看最新版本. 介绍 至ECMAScript 2015开始,symbol成为了一种新的原始类型,就像n ...

  7. ios build时,Undefined symbols for architecture xxx问题的总结

    简单来说,Undefined symbols基本上等于JAVA的ClassNotFoundException,最常见的原因有这几种: build的时候没有加framework 比如说,有一段代码我用了 ...

  8. Undefined symbols for architecture x86_64: "_OBJC_CLASS_$_The49DayPersonalFullscreenGiftModel", referenced from: objc-class-ref in The49DayPersonalRoomGiftModel.o ld: symbol(s) not found for a

    Undefined symbols for architecture x86_64: "_OBJC_CLASS_$_The49DayPersonalFullscreenGiftModel&q ...

  9. ios开发错误之: Undefined symbols for architecture x86_64

    错误如下: Undefined symbols for architecture x86_64: "_OBJC_CLASS_$_RoutingHTTPServer", refere ...

随机推荐

  1. Spring自动装配歧义性笔记

    Spring自动装配歧义性笔记 如果系统中存在两个都实现了同一接口的类,Spring在进行@Autowired自动装配的时候,会选择哪一个?如下: // 一下两个类均被标记为bean @Compone ...

  2. 国内首篇云厂商 Serverless 论文入选全球顶会:突发流量下,如何加速容器启动?

    作者 | 王骜 来源 | Serverless 公众号 导读 ​ USENIX ATC (USENIX Annual Technical Conference) 学术会议是计算机系统领域的顶级会议,入 ...

  3. NOI2016区间bzoj4653(线段树,尺取法,区间离散化)

    题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间,使得这 \(M\) 个区间共同包含至少一个 ...

  4. 纯前端H5小应用_localStorage存储

    开发缘由[需求发现和分析] 想要送朋友一个礼物,但是想了想,街上买的东西,em~,我们这样的猿确实不会选礼物啊,由此就想利用自己手中的工具和知识做点有用的东西吧,抱枕是礼物,钢笔是礼物,电子产品也是礼 ...

  5. 如何正确使用JMeter性能测试?紧扣面试实际要求

    前段时间专门挑了一段时间在准备面试.经过两次面试后,有一些比较深刻的认识.对于企业要求来说,除了对专业理论知识考究之外,对测试工具这块也是看重的. 一.使用JMeter测试快速入门 1.线程组是什么 ...

  6. stm32串口USART 硬件流控 --学习笔记

    流控的概念源于 RS232 这个标准,在 RS232 标准里面包含了串口.流控的定义.大家一定了解,RS232 中的"RS"是Recommend Standard 的缩写,即&qu ...

  7. Java:final,finally 和 finalize 的区别

    在Java中,final,final和finalize之间有许多差异.final,final和finalize之间的差异列表如下: No final finally finalize 1 final用 ...

  8. 转:BeanFactory和FactoryBean的区别

    一.BeanFactory简介 BeanFacotry是spring中比较原始的Factory.如XMLBeanFactory就是一种典型的BeanFactory.原始的BeanFactory无法支持 ...

  9. Python | 标识符命名规范

    简单地理解,标识符就是一个名字,就好像我们每个人都有属于自己的名字,它的主要作用就是作为变量.函数.类.模块以及其他对象的名称. Python 中标识符的命名不是随意的,而是要遵守一定的命令规则,比如 ...

  10. Logic strength modeling

    7.9 Verilog HDL提供了信号争用.双向通过门.电阻式MOS器件.动态MOS.电荷共享的精确建模,并通过允许标量净信号值具有全范围的未知值和不同强度级别或强度级别的组合来实现其他依赖于技术的 ...