[TJOI2007] 可爱的质数
题意
求最小的\(x\)满足\(a^x \equiv b\mod p\)
想法
这个是标准的板子题,\(BSGS\)算法可以用来解决\(a^x \equiv b\mod p\) 和 \(x^a \equiv b\mod p\)问题
本题是前者
我们考虑这样 \(a^{A * \sqrt p - B} \equiv b\mod p\)
有
\(a^{A * \sqrt p} \equiv ba^{B}\mod p\)
其中(\(A,B < \sqrt p\))
我们先枚举\(B\)统计出\(ba^B\)的答案用\(hash 或者 map\)给存下来
再枚举\(A\)统计答案即可
代码(与想法里的字符不同)
#include<iostream>
#include<cstdio>
#include<map>
#include<cmath>
#define ll long long
using std::map;
ll a,b,p;
ll A,B,minn = 0x3f3f3f3f;
map<ll,ll>QWQ;
ll ans[1000],cnt;
int main(){
scanf("%lld%lld%lld",&p,&a,&b);//5 2 3 2 ^ x == 3 (mod 5)
ll s = ceil(sqrt(p));
if(a % p == 0){
puts("no solution");
return 0;
}
QWQ[s] = 0;
B = b,A = 1;
for(int i = 1;i <= s;++i){
B = (B * a) % p;
A = (A * a) % p;
QWQ[B] = i;
}
ll now = 1;
for(int i = 1;i <= s;++i){
now = (now * A) % p;
if(QWQ[now]){
std::cout<<(i * s - QWQ[now] + 2 * p) % p<<std::endl;
return 0;
}
}
puts("no solution");
}
[TJOI2007] 可爱的质数的更多相关文章
- [Luogu] P3846 [TJOI2007]可爱的质数
题目描述 给定一个质数P(2<=P<2312^{31}231),以及一个整数B(2<=B<P),一个整数N(2<=N<P). 现在要求你计算一个最小的L,满足BL≡ ...
- Luogu P3846 [TJOI2007] 可爱的质数/【模板】BSGS
题意 给定 \(y,z,p\),求最小的正整数 \(x\) 满足 \(y^x\equiv z\bmod p\),保证 \(p\) 是质数. \(\texttt{Data Range:}2\leq y, ...
- 【[TJOI2007]可爱的质数】
题目 用一道板子题来复习一下\(bsgs\) \(bsgs\)用于求解形如 \[a^x\equiv b(mod\ p)\] 这样的高次不定方程 由于费马小定理的存在,我们可是直接暴力扫一遍\(p\), ...
- 【洛谷 P3846】 [TJOI2007]可爱的质数 (BSGS)
题目链接 \(BSGS\)模板题..不会点这里 #include <cstdio> #include <cmath> #include <map> using na ...
- BSGS及扩展BSGS总结(BSGS,map)
蒟蒻哪里有什么总结,只能点击%YL% 还有这位ZigZagK大佬的blog \(\mbox{BSGS}\) 模板题:洛谷P3846 [TJOI2007]可爱的质数 给定\(a,b\)和模数\(\mbo ...
- new 经典基础模板总结
NOIP-NOI-ZJOI基础模板总结 目录 C++语言和STL库操作 重载运算符操作 /* 重载运算符 格式 如重载小于号 这里是以x递减为第一关键字比较,y递减为第二关键字比较 */ bool o ...
- [note]BSGS & exBSGS
BSGS (感觉这东西还是要写一下) BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题 设\(m=\lceil\sqrt p\rceil,k ...
- 大步小步法(BSGS) 学习笔记
\(\\\) BSGS 用于求解关于 \(x\) 的方程: \[ a^x\equiv b\pmod p\ ,\ (p,a)=1 \] 一般求解的是模意义下的指数,也就是最小非负整数解. \(\\\) ...
- BSGS算法(大小步算法)
$BSGS$ 算法 $Baby\ Steps\ Giant\ Steps$. 致力于解决给定两个互质的数 $a,\ p$ 求一个最小的非负整数 $x$ 使得 $a^x\equiv b(mod\ p)$ ...
随机推荐
- 【转载】如何从零开始开发一款嵌入式产品(20年的嵌入式经验分享学习,来自STM32神舟系列开发板设计师的总结
[好文章值得分享,摘自作者:jesse] 来源:www.armjishu.com作者:jesse转载请注明出处 我的另一篇文章:<STM32嵌入式入门必看之文章-----介绍非常详细!(学STM ...
- Beta阶段第九次会议
Beta阶段第九次会议 时间:2020.5.25 完成工作 姓名 完成工作 任务难度 完成度 ltx 1.发现小程序身份认证bug和新闻列表获取bug2.修改新增页面风格 轻 90% xyq 1.修改 ...
- Spring Cloud Alibaba 使用Nacos作为服务注册中心
为什么需要注册中心? 在分布式架构中,服务会注册到这里,当服务需要调用其它服务时,就到这里找到服务的地址,进行调用:服务管理,核心是有个服务注册表,心跳机制动态维护 : 服务注册 创建普通Spring ...
- matplotlib.legend()函数用法
用的较多,作为记录 legend语法参数如下: matplotlib.pyplot.legend(*args, **kwargs) 几个暂时主要用的参数: (1)设置图例位置 使用loc参数 plt. ...
- 利用pyplot绘制sin(x)和cos(x)的组合图像
一.实验目标 (1) 掌握numpy库的使用 (2) 掌握matplotlib库的使用 (3) 掌握pyplot的基本函数和方法 二.实验内容 import matplotlib.pyla ...
- Docker 18.03导入导出
docker中分容器和镜像,简单可以理解为容器是运行中的实例,镜像是运行实例所需的静态文件. 导入导出既可以对容器做操作,也可以对镜像做操作.区别在于镜像可以随时导出,容器必须要停止之后才可以导出,否 ...
- 测试平台系列(71) Python定时任务方案
大家好~我是米洛! 我正在从0到1打造一个开源的接口测试平台, 也在编写一套与之对应的完整教程,希望大家多多支持. 欢迎关注我的公众号测试开发坑货,获取最新文章教程! 定时任务 定时任务,顾名思义: ...
- Ubuntu 安装 mysql 报错 "update-alternatives: 错误: 候选项路径 /etc/mysql/mysql.cnf 不存在"
解决方法: sudo cp /etc/mysql/my.cnf /etc/mysql/mysql.cnf 偷梁换柱-! 如果想更新mysql的源方法如下: wget http://dev.mysql. ...
- kubernetes创建用户
创建k8s User Account 使用openssl方法创建普通用户 准备工作 1 2 3 4 mkdir /root/pki/ 将k8s ca.pem ca-key.pem 证书拷贝到此目录 ...
- [jmeter]Jmeter+ant实现接口自动化
1.安装jmeter 和ant &环境变量配置百度去~ 2.jmeter和ant关联 &将JMeter所在目录下extras子目录里的ant-JMeter-1.1.1.jar复制到an ...