PTA 7-2 哈夫曼编码 (30分)
PTA 7-2 哈夫曼编码 (30分)
给定一段文字,如果我们统计出字母出现的频率,是可以根据哈夫曼算法给出一套编码,使得用此编码压缩原文可以得到最短的编码总长。然而哈夫曼编码并不是唯一的。例如对字符串"aaaxuaxz",容易得到字母 ‘a’、‘x’、‘u’、‘z’ 的出现频率对应为 4、2、1、1。我们可以设计编码 {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111},也可以用另一套 {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000},还可以用 {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101},三套编码都可以把原文压缩到 14 个字节。但是 {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} 就不是哈夫曼编码,因为用这套编码压缩得到 00001011001001 后,解码的结果不唯一,“aaaxuaxz” 和 “aazuaxax” 都可以对应解码的结果。本题就请你判断任一套编码是否哈夫曼编码。
输入格式:
首先第一行给出一个正整数 N(2≤N≤63),随后第二行给出 N 个不重复的字符及其出现频率,格式如下:
c[1] f[1] c[2] f[2] ... c[N] f[N]
其中c[i]是集合{‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}中的字符;f[i]是c[i]的出现频率,为不超过 1000 的整数。再下一行给出一个正整数 M(≤1000),随后是 M 套待检的编码。每套编码占 N 行,格式为:
c[i] code[i]
其中c[i]是第i个字符;code[i]是不超过63个’0’和’1’的非空字符串。
输出格式:
对每套待检编码,如果是正确的哈夫曼编码,就在一行中输出"Yes",否则输出"No"。
注意:最优编码并不一定通过哈夫曼算法得到。任何能压缩到最优长度的前缀编码都应被判为正确。
输入样例:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
输出样例:
Yes
Yes
No
No
【程序思路】
这里主要利用哈夫曼编码的两个性质:
- 哈夫曼编码可能不唯一,但是哈夫曼编码的长度是唯一的。字符串编码成01串后的长度实际上就是其以频率为权值所构成的任意一颗哈夫曼树的带权路径长度。
- 对于任何一个叶子结点,其编号一定不会成为其他任何一个结点编号的前缀—也就是说,题目中给出需要判断的的每个字符的编码,它不会是其他字符编码的前缀。
即可AC
【程序实现】
#include<bits/stdc++.h>
using namespace std;
int main(){
int s = 0, n, m, x, a[100];
char ch;
priority_queue<int,vector<int>,greater<int> > q; //优先队列
cin>>n;getchar();
for(int i = 0; i < n; i++) {
cin>>ch>>x;
a[i] = x;
q.push(x);
}
while(q.size() > 1) {
int x = q.top();
q.pop();
int y = q.top();
q.pop();
s = s + x + y;
q.push(x + y);
}
cin>>m;
while(m--) {
int s1 = 0;
string str[100];
for(int i = 0; i < n; i++) {
cin>>ch>>str[i];
s1 = s1 + str[i].size() * a[i];
}
if(s == s1) {
bool jdg = true;
for (int i = 0; i < n-1; i++) {
for (int j = i+1; j < n; j++) {
int flag = 0;
int size = str[i].size() > str[j].size() ? str[j].size() : str[i].size();
for(int k = 0; k < size; k++)
if(str[i][k] != str[j][k])
flag = 1;
if (!flag)
jdg = false;
}
}
if(jdg)
cout<<"Yes\n";
else
cout<<"No\n";
}
else
cout<<"No\n";
}
return 0;
}
PTA 7-2 哈夫曼编码 (30分)的更多相关文章
- 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 霍夫曼编码(Huffman Coding)
霍夫曼编码(Huffman Coding)是一种编码方法,霍夫曼编码是可变字长编码(VLC)的一种. 霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符 ...
- 哈夫曼(Huffman)树+哈夫曼编码
前天acm实验课,老师教了几种排序,抓的一套题上有一个哈夫曼树的题,正好之前离散数学也讲过哈夫曼树,这里我就结合课本,整理一篇关于哈夫曼树的博客. 主要摘自https://www.cnblogs.co ...
- 2018.2.14 Java中的哈夫曼编码
概念 哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,哈夫曼编码是可变字长编码(VLC)的一种.Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造 ...
- Java 树结构实际应用 二(哈夫曼树和哈夫曼编码)
赫夫曼树 1 基本介绍 1) 给定 n 个权值作为 n 个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为 最优二叉树,也称为哈夫曼树(Huffman Tree), ...
- 哈夫曼(huffman)树和哈夫曼编码
哈夫曼树 哈夫曼树也叫最优二叉树(哈夫曼树) 问题:什么是哈夫曼树? 例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80-89分: B,70-79分: C,60-69分: D,<60 ...
- (转载)哈夫曼编码(Huffman)
转载自:click here 1.哈夫曼编码的起源: 哈夫曼编码是 1952 年由 David A. Huffman 提出的一种无损数据压缩的编码算法.哈夫曼编码先统计出每种字母在字符串里出现的频率, ...
- HDU2527 哈夫曼编码
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- *HDU1053 哈夫曼编码
Entropy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
随机推荐
- python之jsonpath
json 官方文档:http://docs.python.org/library/json.html JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使 ...
- P4643-[国家集训队]阿狸和桃子的游戏【结论】
正题 题目链接:https://www.luogu.com.cn/problem/P4643 题目大意 给出\(n\)个点\(m\)条边的无向图,两个人轮流选择一个未被选择的点加入点集. 然后每个人的 ...
- YbtOJ#752-最优分组【笛卡尔树,线段树】
正题 题目链接:http://www.ybtoj.com.cn/problem/752 题目大意 \(n\)个人,每个人有\(c_i\)和\(d_i\)分别表示这个人所在的队伍的最少/最多人数. 然后 ...
- mybatis plus 一对多,多表联查的使用小记
阅读本博文需要有基础的mybatis以及mybatis plus知识,如果没有建议您了解相关的内容 本项目使用的是springboot构建的,数据库字段命名不严谨仅做演示测试使用,本文不做相关源码的解 ...
- mysql学习教程之mysql管理
MySQL 管理 启动及关闭 MySQL 服务器 Windows 系统下 在 Windows 系统下,打开命令窗口(cmd),进入 MySQL 安装目录的 bin 目录. 启动: cd c:/mysq ...
- JVM学习笔记——GC算法
GC 算法 GC 即 Garbage Collection 垃圾回收.JVM 中的 GC 99%发生在堆中,而 Java 堆中采用的垃圾回收机制为分代收集算法.即将堆分为新生代和老年代,根据不同的区域 ...
- 从零入门 Serverless | 使用 Spot 低成本运行 Job 任务
作者 | 代志锋(云果) 阿里云技术专家 本文整理自<Serverless 技术公开课>,点击链接即可免费听课:https://developer.aliyun.com/learning ...
- 题解 「2017 山东一轮集训 Day5」苹果树
题目传送门 题目大意 给出一个 \(n\) 个点的图,每个点都有一个权值 \(f_i\) ,如果 \(f_i=-1\) 表示 \(i\) 这个点是坏的.定义一个点是有用的当且仅当它不是坏的,并且它连的 ...
- 洛谷2408不同字串个数/SPOJ 694/705 (后缀数组SA)
真是一个三倍经验好题啊. 我们来观察这个题目,首先如果直接整体计算,怕是不太好计算. 首先,我们可以将每个子串都看成一个后缀的的前缀.那我们就可以考虑一个一个后缀来计算了. 为了方便起见,我们选择按照 ...
- JVM详解(三)——运行时数据区
一.概述 1.介绍 类比一下:红框就好比内存的运行时数据区,在各自不同的位置放了不同的东西.而厨师就好比执行引擎. 内存是非常重要的系统资源,是硬盘和CPU的中间仓库及桥梁,承载着操作系统和应用程序的 ...