题面传送门

题意:求 \(\max\limits_{i<j<k}a_i|(a_j\&a_k)\)。

\(1\leq n \leq 10^6,1\leq a_i\leq 2\times 10^6\)

u1s1 这题算高维前缀和里不那么 sb 的题,虽然代码也很简单。

很容易想到一个贪心,从高到低枚举每一位,能填 \(1\) 就填 \(1\),不能填 \(1\) 就填 \(0\)。

于是本题转化为一个问题:是否存在某个 \(i,j,k\) 使得 \(x\) 为 \(a_i|(a_j\&a_k)\) 的子集。枚举 \(a_i\) 包含 \(x\) 中的哪些位,然后贪心地取下标最小的 \(i\),以及下标最大的 \(j,k\),判断 \(i<j\) 即可。

至于怎样求下标最小的 \(i\) 和下标最大的 \(j,k\)。记 \(mn_x\) 为下标最小的包含 \(x\) 的 \(a_i\),\(mx_x\) 为下标最大的两个包含 \(x\) 的 \(a_i\)。高位前缀和随便一搞就行了。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=1;
while(!isdigit(c)){if(c=='-') neg=-1;c=getchar();}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
x*=neg;
}
const int MAXN=1e6;
const int LOG_N=21;
const int LIM=(1<<LOG_N)-1;
int n,a[MAXN+5],tmp[4],mn[LIM+5];
pii mx[LIM+5];
pii merge(pii x,pii y){
tmp[0]=x.fi,tmp[1]=x.se,tmp[2]=y.fi,tmp[3]=y.se;
sort(tmp,tmp+4);reverse(tmp,tmp+4);return mp(tmp[0],tmp[1]);
}
bool check(int x){
for(int i=x;i;i=(i-1)&x) if(mn[x^i]<mx[i].se) return 1;
return (mn[x]<mx[0].se);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
memset(mn,63,sizeof(mn));
for(int i=1;i<=n;i++) mn[a[i]]=min(mn[a[i]],i);
for(int i=1;i<=n;i++) mx[a[i]]=merge(mx[a[i]],mp(i,0));
for(int i=0;i<LOG_N;i++) for(int j=LIM;~j;j--) if(!(j>>i&1)){
mn[j]=min(mn[j],mn[j^(1<<i)]);mx[j]=merge(mx[j],mx[j^(1<<i)]);
}
int cur=0;for(int i=LOG_N;~i;i--) if(check(cur|(1<<i))) cur|=(1<<i);
printf("%d\n",cur);
return 0;
}

上帝不要惩罚我刷水题(

Codeforces 1208F - Bits And Pieces(高维前缀和)的更多相关文章

  1. Codeforces 1208F Bits And Pieces 位运算 + 贪心 + dp

    题意:给你一个序列a, 问a[i] ^ (a[j] & a[k])的最大值,其中i < j < k. 思路:我们考虑对于每个a[i]求出它的最优解.因为是异或运算,所以我们从高位向 ...

  2. Codeforces F. Bits And Pieces(位运算)

    传送门. 位运算的比较基本的题. 考虑枚举\(i\),然后二进制位从大到小考虑, 对于第\(w\)位,如果\(a[i][w]=1\),那么对\(j.k\)并没有什么限制. 如果\(a[i][w]=0\ ...

  3. CF1208F Bits And Pieces

    CF1208F Bits And Pieces 传送门 思路 这里要运用SOS-DP的思路(\(\text{Sum over Subsets}\)).我在另外一篇博客里介绍过,如有需要可以搜索一下我的 ...

  4. Codeforces 449D Jzzhu and Numbers(高维前缀和)

    [题目链接] http://codeforces.com/problemset/problem/449/D [题目大意] 给出一些数字,问其选出一些数字作or为0的方案数有多少 [题解] 题目等价于给 ...

  5. codeforces 938F(dp+高维前缀和)

    题意: 给一个长度为n的字符串,定义$k=\floor{log_2 n}$ 一共k轮操作,第i次操作要删除当前字符串恰好长度为$2^{i-1}$的子串 问最后剩余的字符串字典序最小是多少? 分析: 首 ...

  6. Codeforces 772D - Varying Kibibits(高维差分+二项式定理维护 k 次方和)

    Codeforces 题目传送门 & 洛谷题目传送门 首先很容易注意到一件事,那就是对于所有 \(f(S)\) 可能成为 \(x\) 的集合 \(S\),必定有 \(\forall y\in ...

  7. LOJ2542 PKUWC2018 随机游走 min-max容斥、树上高斯消元、高维前缀和、期望

    传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x ...

  8. Luogu3175 HAOI2015 按位或 min-max容斥、高维前缀和、期望

    传送门 套路题 看到\(n \leq 20\),又看到我们求的是最后出现的位置出现的时间的期望,也就是集合中最大值的期望,考虑min-max容斥. 由\(E(max(S)) = \sum\limits ...

  9. HihoCoder - 1496:寻找最大值(高维前缀和||手动求子集)

    描述 给定N个数A1, A2, A3, ... AN,小Ho想从中找到两个数Ai和Aj(i ≠ j)使得乘积Ai × Aj × (Ai AND Aj)最大.其中AND是按位与操作. 小Ho当然知道怎么 ...

随机推荐

  1. 【UE4 设计模式】命令模式 Command Pattern

    概述 描述 将一个请求封装为一个对象,从而使我们可用不同的请求对客户进行参数化:对请求排队或者记录请求日志,以及支持可撤销的操作. 命令模式是一种对象行为型模式,其别名为动作(Action)模式或事务 ...

  2. 痞子衡嵌入式:超级下载算法RT-UFL v1.0在Keil MDK下的使用

    痞子衡主导的"学术"项目 <RT-UFL - 一个适用全平台i.MXRT的超级下载算法设计> v1.0 版发布近 4 个月了,部分客户已经在实际项目开发调试中用上了这个 ...

  3. Beta版本发布计划

    Beta版本新功能 小程序v2.0新功能 新功能列表 页面 新功能描述 图片涂鸦页 增加了马赛克方块形式的涂鸦,同样支持撤销和保存 图片裁切页 增加了图片裁切功能,实现对目标图片的尺寸进行裁切 编辑图 ...

  4. BUAA SE 个人项目作业

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人项目作业 我在这个课程的目标是 通过个人项目实践熟悉个人开发流程 一.在文章开头给出教学班级和 ...

  5. vim 常用操作技巧

    记录常用的vim操作技巧,基本满足90%的日常编辑使用. 文档操作 vim test.txt 打开当前目录下的test.txt文档,若不存在则创建该文件 :w 保存当前修改到文件 :w bak.txt ...

  6. 0x02

    #include<bits/stdc++.h> using namespace std; int n,a[10][10],vis[10],ans,b[10][10]; inline int ...

  7. 重新整理 .net core 实践篇——— filter[四十四]

    前言 简单介绍一下filter 正文 filter 的种类,微软文档中写道: 每种筛选器类型都在筛选器管道中的不同阶段执行: 授权筛选器最先运行,用于确定是否已针对请求为用户授权. 如果请求未获授权, ...

  8. Canal 实战 | 第一篇:SpringBoot 整合 Canal + RabbitMQ 实现监听 MySQL 数据库同步更新 Redis 缓存

    一. Canal 简介 canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费 早期阿里巴巴因为杭州和美国双机房部署,存在跨机房同 ...

  9. GitHub 开源的小工具「GitHub 热点速览 v.21.45」

    作者:HelloGitHub-小鱼干 Copilot 是 GitHub 官方出品的代码自动补全工具,之前使用该工具需要有一定的要求.而本周靠 2k+ star 上热点的 copilot-docs 则是 ...

  10. Linux&C———进程间通信

    管道和有名管道 消息队列 共享内存 信号 套接字 由于进程之间的并不会像线程那样共享地址空间和数据空间,所以进程之间就必须有自己特有的通信方式,这篇博客主要介绍自己了解到的几种进程之间的通信方式,内容 ...