K210,yolo,face_mask口罩检测模型训练及其在K210,kd233上部署
前段时间考研,再加上工作,时间很紧,一直没有更新博客,这几天在搞k210的目标检测模型,做个记录,遇到问题可以添加qq522414928或添加微信13473465975,共同学习
首先附上github地址,本人自己改的,绝对好用,只要有数据,就能跑通https://github.com/LiuXinyu12378/yolo-k210-face-mask
也是想在考研复试的时候可以拿出来给导师看看,证明自己会一些算法和软硬件的东西,让导师更认可自己,好了,下面简单介绍一下过程。
这个模型大概看了看,就是mobilenet+yolo2的检测头,实际就是yolo2的效果
1.首先,就是要准备数据,思来想去,口罩的检测可能更有实际意义,所以就找了口罩的数据,下面分享给大家。可以使用自己的数据集或自己标注一些自己想做得场景,标注工具也在工程里了。
链接:https://pan.baidu.com/s/1mzcFeHboRKcEPfLJNGJ5yA
提取码:9213
2.训练模型,为了达到更好的效果,首先用kmeans聚类,获取图像对应的anchors,效果还可以,然后修改configs.json文件,这里模型输入的大小是224*224的,其实320*240的会更好,修改anchors和训练路径,然后python trian.py训练。训练好后模型会保存在save文件夹下tflite文件。
这里说下为什么模型320*240更好,这是由板子上的摄像头和显示屏决定的,因为k210的c语言没办法实现resize操作,这对它来说太难了,即便写了底层的函数也会运行很慢,所以模型要适配板子,模型的输入要小于等于320*240,这个模型的输入是224*224的,所以屏幕的检测输出并没有沾满,只用了左上角224*224的显示大小。
3.模型转换,模型量化,使用工程目录下得ncc_0.1_win,解压后,把tflite转换成Kmodel,原来训练好的tflite模型大小为20多M,转换完只有1.81M,说明量化很充分,模型在板子上跑起来也很轻快。
ncc_0.1_win\ncc test.tflite test.kmodel -i tflite -o k210model --dataset train_img
4.使用官方的Kendryte IDE,编译模型。没有Kendryte IDE的可以百度自行下载,打开kendryte_kpu-standalone_3工程目录
改这个工程的时候遇到很多坑,这个代码官方没给任何说明,经过大量的尝试结合算法经验,终于把它给改好了。

5.烧录编译好的二进制文件到开发板KD233

6.烧写模型文件kmodle到flask

最终效果还不错,各种口罩图片基本全能识别,上图,照的是本人(从来没怀疑过自己)

上图2,感谢观看

K210,yolo,face_mask口罩检测模型训练及其在K210,kd233上部署的更多相关文章
- 如何使用 Yolov4 训练人脸口罩检测模型
前言 疫情当下,出入医院等公共场所都被要求佩戴口罩.这篇博客将会介绍如何使用 Yolov4,训练一个人脸口罩检测模型(使用 Yolov4 的原因是目前只复现到了 v4 ),代码地址为 https:// ...
- ssd物体检测模型训练和测试总结
参考网址:github:https://github.com/naisy/realtime_object_detection 2018.10.16ssd物体检测总结:切记粗略地看一遍备注就开始训练模型 ...
- DPM检测模型 训练自己的数据集 读取接口修改
(转载请注明作者和出处 楼燚(yì)航的blog :http://www.cnblogs.com/louyihang-loves-baiyan/ 未经允许请勿用于商业用途) 本文主要是针对上一篇基于D ...
- YOLO V4的模型训练
1.YOLO V4模型训练的基本思路 所有机器学习涉及模型训练,一般都有训练集.验证集.测试集,因此需要准备数据集.有了数据集,再调用训练的算法,获取训练的结果.v3.v4模型训练方法相同. 2.YO ...
- iGear 用了这个小魔法,模型训练速度提升 300%
一个高精度AI模型离不开大量的优质数据集,这些数据集往往由标注结果文件和海量的图片组成.在数据量比较大的情况下,模型训练周期也会相应加长.那么有什么加快训练速度的好方法呢? 壕气的老板第一时间想到的通 ...
- [1] YOLO 图像检测 及训练
YOLO(You only look once)是流行的目标检测模型之一, 原版 Darknet 使用纯 C 编写,不需要安装额外的依赖包,直接编译即可. CPU环境搭建 (ubuntu 18.04) ...
- 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练
上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...
- YOLO、SSD、FPN、Mask-RCNN检测模型对比
YOLO.SSD.FPN.Mask-RCNN检测模型对比 一.YOLO(you only look once) YOLO 属于回归系列的目标检测方法,与滑窗和后续区域划分的检测方法不同,他把检测任务当 ...
- 第三十二节,使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)
前面已经介绍了几种经典的目标检测算法,光学习理论不实践的效果并不大,这里我们使用谷歌的开源框架来实现目标检测.至于为什么不去自己实现呢?主要是因为自己实现比较麻烦,而且调参比较麻烦,我们直接利用别人的 ...
随机推荐
- JpaRepository 增删改查
Jpa查询 JpaRepository简单查询 基本查询也分为两种,一种是spring data默认已经实现,一种是根据查询的方法来自动解析成SQL. 预先生成方法 spring data jpa 默 ...
- Spring 与 SpringBoot 的区别
概述 Spring 与 SpringBoot 有什么区别???梳理一下 Spring 和 SpringBoot 到底有什么区别,从 Spring 和 SpringBoot 两方面入手. Spring ...
- 网络通信引擎ICE的使用
ICE是一种网络通信引擎,在javaWeb的开发中可以用于解决局域网内部服务器端与客户端之间的网络通信问题.即可以在 1.在服务器和客户端都安装好ICE 2.服务器端(java)在java项目中引入I ...
- Nginx平滑升级版本
目录 一.简介 说明 环境 二.安装 三.使用验证 一.简介 说明 Nginx版本迭代迅速,新版本提供了很多功能,好在Nginx支持不停服务进行升级. 版本之间差距不要太大,不然会导致很多东西不支持 ...
- 利用 clip-path 实现动态区域裁剪
背景 今天逛 CodePen,看到了这样一个非常有意思的效果: CodePen Demo -- Material Design Menu By Bennett Feely 这个效果还是有一些值得探讨学 ...
- Charles ios设备抓包
在Mac下做开发,用Fiddler抓包由于离不开Windows比较痛苦,还好有Charles,到官网http://www.charlesproxy.com/可下载到最新版本(若不支持rMBP可拖到Re ...
- 合并函数Combiner.Combine…(Power Query 之 M 语言)
按相同分隔符合并: =Combiner.CombineTextByDelimiter("分隔符", 引号字符) 分隔符 直接输入 特殊符号 制表符:#(tab) 回车:#(cr) ...
- .net core使用EF core连接mssqlserver数据库
一,打开控制台二,输入以下代码1.Install-Package Microsoft.EntityFrameworkCore 2.Install-Package Microsoft.EntityFra ...
- Hooks中的useState
Hooks中的useState React的数据是自顶向下单向流动的,即从父组件到子组件中,组件的数据存储在props和state中,实际上在任何应用中,数据都是必不可少的,我们需要直接的改变页面上一 ...
- 5、双指针技巧套路框架——Go语言版
前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...