Python学习笔记-PuLP库(3)线性规划实例
本节以一个实际数学建模案例,讲解 PuLP 求解线性规划问题的建模与编程。
1、问题描述
某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克、工人10名,获利10万元;每百箱乙饮料需用原料5千克、工人20名,获利9万元。
今工厂共有原料60千克、工人150名,又由于其他条件所限甲饮料产量不超过8百箱。
(1)问如何安排生产计划,即两种饮料各生产多少使获利最大?
(2)若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
(3)若每百箱甲饮料获利可增加1万元,是否应否改变生产计划?
(4)若每百箱甲饮料获利可增加1万元,若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
(5)若不允许散箱(按整百箱生产),如何安排生产计划,即两种饮料各生产多少使获利最大?
2、用PuLP 库求解线性规划
2.1 问题 1
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
目标函数:
max fx = 10*x1 + 9*x2
约束条件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 编程
ProbLP1 = pulp.LpProblem("ProbLP1", sense=pulp.LpMaximize) # 定义问题 1,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
ProbLP1 += (10*x1 + 9*x2) # 设置目标函数 f(x)
ProbLP1 += (6*x1 + 5*x2 <= 60) # 不等式约束
ProbLP1 += (10*x1 + 20*x2 <= 150) # 不等式约束
ProbLP1.solve()
print(ProbLP1.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP1.status]) # 输出求解状态
for v in ProbLP1.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F1(x)=", pulp.value(ProbLP1.objective)) # 输出最优解的目标函数值
(3)运行结果
ProbLP1
x1=6.4285714
x2=4.2857143
F1(X)=102.8571427
2.2 问题 2
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
x3:增加投资(单位:万元)
目标函数:
max fx = 10*x1 + 9*x2 - x3
约束条件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 编程
ProbLP2 = pulp.LpProblem("ProbLP2", sense=pulp.LpMaximize) # 定义问题 2,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
x3 = pulp.LpVariable('x3', cat='Continuous') # 定义 x3
ProbLP2 += (10*x1 + 9*x2 - x3) # 设置目标函数 f(x)
ProbLP2 += (6*x1 + 5*x2 - 1.25*x3 <= 60) # 不等式约束
ProbLP2 += (10*x1 + 20*x2 <= 150) # 不等式约束
ProbLP2.solve()
print(ProbLP2.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP2.status]) # 输出求解状态
for v in ProbLP2.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F2(x)=", pulp.value(ProbLP2.objective)) # 输出最优解的目标函数值
(3)运行结果
ProbLP2
x1=8.0
x2=3.5
x3=4.4
F2(X)=107.1
2.3 问题 3
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
目标函数:
max fx = 11*x1 + 9*x2
约束条件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 编程
ProbLP3 = pulp.LpProblem("ProbLP3", sense=pulp.LpMaximize) # 定义问题 3,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
ProbLP3 += (11 * x1 + 9 * x2) # 设置目标函数 f(x)
ProbLP3 += (6 * x1 + 5 * x2 <= 60) # 不等式约束
ProbLP3 += (10 * x1 + 20 * x2 <= 150) # 不等式约束
ProbLP3.solve()
print(ProbLP3.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP3.status]) # 输出求解状态
for v in ProbLP3.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F3(x) =", pulp.value(ProbLP3.objective)) # 输出最优解的目标函数值
(3)运行结果
ProbLP3
x1=8.0
x2=2.4
F3(X) = 109.6
2.4 问题 4
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
x3:增加投资(单位:万元)
目标函数:
max fx = 11*x1 + 9*x2 - x3
约束条件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 编程
ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize) # 定义问题 2,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
x3 = pulp.LpVariable('x3', cat='Continuous') # 定义 x3
ProbLP4 += (11 * x1 + 9 * x2 - x3) # 设置目标函数 f(x)
ProbLP4 += (6 * x1 + 5 * x2 - 1.25 * x3 <= 60) # 不等式约束
ProbLP4 += (10 * x1 + 20 * x2 <= 150) # 不等式约束
ProbLP4.solve()
print(ProbLP4.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP4.status]) # 输出求解状态
for v in ProbLP4.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F4(x) = ", pulp.value(ProbLP4.objective)) # 输出最优解的目标函数值
(3)运行结果
ProbLP4
x1=8.0
x2=3.5
x3=4.4
F4(X) = 115.1
2.5 问题 5:整数规划问题
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量,正整数(单位:百箱)
x2:乙饮料产量,正整数(单位:百箱)
目标函数:
max fx = 10*x1 + 9*x2
约束条件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8,x1, x2 为整数
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7
说明:本题中要求饮料车辆为整百箱,即决策变量 x1,x2 为整数,因此是整数规划问题。PuLP提供了整数规划的
(2)Python 编程
ProbLP5 = pulp.LpProblem("ProbLP5", sense=pulp.LpMaximize) # 定义问题 1,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer') # 定义 x1,变量类型:整数
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Integer') # 定义 x2,变量类型:整数
ProbLP5 += (10 * x1 + 9 * x2) # 设置目标函数 f(x)
ProbLP5 += (6 * x1 + 5 * x2 <= 60) # 不等式约束
ProbLP5 += (10 * x1 + 20 * x2 <= 150) # 不等式约束
ProbLP5.solve()
print(ProbLP5.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP5.status]) # 输出求解状态
for v in ProbLP5.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F5(x) =", pulp.value(ProbLP5.objective)) # 输出最优解的目标函数值
(3)运行结果
ProbLP5
x1=8.0
x2=2.0
F5(X) = 98.0
版权说明:
YouCans 原创作品
Copyright 2021 YouCans, XUPT
Crated:2021-04-30
Python学习笔记-PuLP库(3)线性规划实例的更多相关文章
- [Python学习笔记] turtle库的基本使用
turtle库常用函数 引入turtle模块 import turtle turtle的绘图窗体 #setup()设置窗口大小及位置#setup()可省略turtle.setup(width,heig ...
- python学习笔记——urllib库中的parse
1 urllib.parse urllib 库中包含有如下内容 Package contents error parse request response robotparser 其中urllib.p ...
- Python学习笔记——Matplot库
https://www.cnblogs.com/laoniubile/p/5893286.html 一.基本指令 import matplotlib.pyplot as plt plt.figure ...
- Python数模笔记-PuLP库(1)线性规划入门
1.什么是线性规划 线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配.生产调度和混合问题.例如: max fx = 2*x1 ...
- OpenCV之Python学习笔记
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书< ...
- Deep learning with Python 学习笔记(9)
神经网络模型的优化 使用 Keras 回调函数 使用 model.fit()或 model.fit_generator() 在一个大型数据集上启动数十轮的训练,有点类似于扔一架纸飞机,一开始给它一点推 ...
- python 学习笔记 13 -- 经常使用的时间模块之time
Python 没有包括相应日期和时间的内置类型.只是提供了3个相应的模块,能够採用多种表示管理日期和时间值: * time 模块由底层C库提供与时间相关的函数.它包括一些函数用于获取时钟时间和处 ...
- Python 学习笔记(上)
Python 学习笔记(上) 这份笔记是我在系统地学习python时记录的,它不能算是一份完整的参考,但里面大都是我觉得比较重要的地方. 目录 Python 学习笔记(上) 基础知识 基本输入输出 模 ...
- python3.4学习笔记(十四) 网络爬虫实例代码,抓取新浪爱彩双色球开奖数据实例
python3.4学习笔记(十四) 网络爬虫实例代码,抓取新浪爱彩双色球开奖数据实例 新浪爱彩双色球开奖数据URL:http://zst.aicai.com/ssq/openInfo/ 最终输出结果格 ...
随机推荐
- Redis持久化机制 RDB和AOF的区别
一.简单介绍 Redis中的持久化机制是一种当数据库发生宕机.断电.软件崩溃等,数据库中的数据无法再使用或者被破坏的情况下,如何恢复数据的方法. Redis中共有两种持久化机制 RDB(Redis D ...
- JavaScript 模拟 sleep
用 JS 实现沉睡几秒后再执行,有好几种方式,但都不完美,以下是我感觉比较好的一种方式 function sleep(time) { return new Promise((resolve) => ...
- Python3.x 基础练习题100例(21-30)
练习21: 题目: 猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前 一天剩下的一半零一个.到第10天早上 ...
- jquery通过live绑定toggle事件
$("a[name=reply]").live("click",function(){ $(this).toggle( function () { var $c ...
- HDOJ-4725(Dijikstra算法+拆点求最短路)
The Shortest Path in Nya Graph HDOJ-4725 这题是关于最短路的问题,但是和常规的最短路有点不同的就是这里多了层次这一结构. 为了解决这一问题可以把每一层抽象或者划 ...
- Linux速通04 用户、群组、权限
用户及passwd文件 # /etc/passwd文件的功能:存储所有用户的相关信息,实际上是存放用户信息的数据库(database) # 各个字段的含义: * 第一个字段(列)记录的是这个用户的名字 ...
- 微服务架构Day16-SpringBoot之监控管理
监控管理使用步骤 通过引入spring-boot-starter-actuator,可以使用SpringBoot提供应用监控和管理的功能.可以通过HTTP,JMX,SSH协议来进行操作,自动得到审计, ...
- axios之增删查改操作
一.get方法获取数据 axios.get('url') .then(function (res) { console.log(res); }).catch(function (error) { co ...
- Tomcat详解系列(1) - 如何设计一个简单的web容器
Tomcat - 如何设计一个简单的web容器 在学习Tomcat前,很多人先入为主的对它的认知是巨复杂的:所以第一步,在学习它之前,要打破这种观念,我们通过学习如何设计一个最基本的web容器来看它需 ...
- 2020年Acm暑期考核Hznu _2797
题目链接:http://acm.hznu.edu.cn/OJ/problem.php?id=2797 题意:求1-N中有多少数字满足: x是正整数且无前导0. x(mod 666) = S(x). 6 ...