在NVIDIA(CUDA,CUBLAS)和Intel MKL上快速实现BERT推理

直接在NVIDIA(CUDA,CUBLAS)或Intel MKL上进行高度定制和优化的BERT推理,而无需tensorflow及其框架开销。

仅支持BERT(转换器)。

基准测试

环境

  • Tesla P4
  • 28 * Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
  • Debian GNU/Linux 8 (jessie)
  • gcc (Debian 4.9.2-10+deb8u1) 4.9.2
  • CUDA: release 9.0, V9.0.176
  • MKL: 2019.0.1.20181227
  • tensorflow: 1.12.0
  • BERT: seq_length = 32

注意:应该在下面运行MKLOMP_NUM_THREADS=?来控制其线程号。其他环境变量及其可能的值包括:

  • KMP_BLOCKTIME=0
  • KMP_AFFINITY=granularity=fine,verbose,compact,1,0

混合精度

NVIDIA Volta和Turing GPU上的Tensor Core 和Mixed Precision可以加速cuBERT 。支持混合精度作为存储在fp16中的变量,并在fp32中进行计算。与单精度推理相比,典型的精度误差小于1%,而速度则达到了2倍以上的加速度。

API

API .h标头

Pooler

支持以下2种pooling方法。

  • 标准BERT pooler,定义为:

with tf.variable_scope("pooler"):

# We "pool" the model by simply taking the hidden state corresponding

# to the first token. We assume that this has been pre-trained

first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)

self.pooled_output = tf.layers.dense(

first_token_tensor,

config.hidden_size,

activation=tf.tanh,

kernel_initializer=create_initializer(config.initializer_range))

  • Simple average pooler:

self.pooled_output = tf.reduce_mean(self.sequence_output, axis=1)

输出量

支持以下输出:

从源构建Build from Source

mkdir build && cd build

# if build with CUDA

cmake -DCMAKE_BUILD_TYPE=Release -DcuBERT_ENABLE_GPU=ON -DCUDA_ARCH_NAME=Common ..

# or build with MKL

cmake -DCMAKE_BUILD_TYPE=Release -DcuBERT_ENABLE_MKL_SUPPORT=ON ..

make -j4

# install to /usr/local

# it will also install MKL if -DcuBERT_ENABLE_MKL_SUPPORT=ON

sudo make install

也将安装MKL

如果想运行tfBERT_benchmark进行性能比较,首先从https://www.tensorflow.org/install/lang_c安装tensorflow C API 。

运行单元测试

从 Dropbox下载BERT测试模型bert_frozen_seq32.pb和vocab.txt,然后将它们放在dir下build,运行make test or ./cuBERT_test

thread

Cython提供的简单Python包装器,可以按如下所示在C ++构建之后构建和安装:

cd python

python setup.py bdist_wheel

# install

pip install dist/cuBERT-xxx.whl

# test

python cuBERT_test.py

cuBERT_test.py中检查Python API的用法和示例,获取更多详细信息。

Java

Java包装器是通过JNA实现的 。安装maven和C ++构建后,可以按以下步骤构建:

cd java

mvn clean package # -DskipTests

当使用Java JAR,需要指定jna.library.path的位置libcuBERT.so,如果没有安装到系统路径。并且jna.encoding应像-Djna.encoding=UTF8 JVM启动脚本中一样设置为UTF8 。

ModelTest.java中检查Java API的用法和示例,获取更多详细信息。

安装

可以按以下方式安装预构建的python二进制软件包(当前仅在Linux上与MKL一起安装):

  • 下载MKL并将其安装到系统路径。
  • 下载wheel package包, pip install cuBERT-xxx-linux_x86_64.whl
  • 运行python -c 'import libcubert'以验证安装。

相依性Dependency

Protobuf

cuBERT是使用protobuf-c构建的,以避免版本和代码与tensorflow protobuf冲突。

CUDA

CUDA编译具有不同版本的库不兼容。

MKL

MKL是动态链接的。使用sudo make install安装cuBERT和MKL 。

Threading

假设cuBERT的典型用法是在线服务,其中应尽快处理不同batch_size的并发请求。因此,吞吐量和延迟应保持平衡,尤其是在纯CPU环境中。

vanilla class Bert类Bert由于其内部用于计算的缓冲区而不是线程安全的,因此 编写了wrapper class BertM来保存不同Bert实例的锁,以确保线程安全。 BertM会以循环方式选择一个基础Bert实例,并且同一Bert实例的结果请求可能会被其相应的锁排队。

显卡

一个Bert放在一张GPU卡上。最大并发请求数是一台计算机上可用的GPU卡数量,CUDA_VISIBLE_DEVICES如果指定,则可以控制该数量。

CPU

对于纯CPU环境,它比GPU更复杂。有2个并行级别:

  1. 请求级别。如果在线服务器本身是多线程的,并发请求将竞争CPU资源。如果服务器是单线程的(例如Python中的某些服务器实现),事情将会变得容易得多。
  2. 操作级别。矩阵运算由OpenMP和MKL并行化。最大并行被控制OMP_NUM_THREADS, MKL_NUM_THREADS和许多其他的环境变量。建议用户首先阅读在多线程应用程序中使用线程化英特尔MKL 和建议的设置以从多线程应用程序中调用英特尔MKL例程 。

因此,引入CUBERT_NUM_CPU_MODELS,更好地控制请求级别并行性的方法。此变量指定Bert在CPU /内存上创建的实例数,其作用类似于CUDA_VISIBLE_DEVICESGPU。

  • 如果CPU核心数量有限(旧的或台式机CPU,或在Docker中),则无需使用CUBERT_NUM_CPU_MODELS。例如4个CPU内核,请求级并行度为1,操作级并行度为4,应该可以很好地工作。
  • 但是,如果有许多CPU核心(例如40),则最好尝试使用5的请求级并行度和8的操作级并行度。

总而言之,OMP_NUM_THREADS或MKL_NUM_THREADS定义一个模型可以使用多少个线程,并CUBERT_NUM_CPU_MODELS定义总共有多少个模型。

同样,每个请求的延迟和总体吞吐量应该保持平衡,并且与model seq_length,batch_sizeCPU核心,服务器QPS和许多其他事情有所不同。应该采用很多基准来实现最佳折衷。

在NVIDIA(CUDA,CUBLAS)和Intel MKL上快速实现BERT推理的更多相关文章

  1. Intel MKL函数,如何得到相同的计算结果?【转】

    在运行程序时,我们总希望多次运行的结果,是完全一致,甚至在不同的机器与不同的OS中,程序运行的结果每一位都完全相同. 事实上,程序往往很难保证做到这一点. 为什么呢? 我们先看一个简单的例子: 当程序 ...

  2. [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程

    基于NVidia开源的nvidia/cuda image,构建适用于DeepLearning的基础image. 思路就是先把常用的东西都塞进去,再装某个框架就省事儿了. 为了体验重装系统的乐趣,所以采 ...

  3. Intel MKL(Math Kernel Library)

    1.Intel MKL简介 Intel数学核心函数库(MKL)是一套高度优化.线程安全的数学例程.函数,面向高性能的工程.科学与财务应用.英特尔 MKL 的集群版本包括 ScaLAPACK 与分布式内 ...

  4. ubuntu配置机器学习环境(四) 安装intel MKL

    在这一模块可以选择(ATLAS,MKL或者OpenBLAS),我这里使用MKL,首先下载并安装英特尔® 数学内核库 Linux* 版MKL,下载链接, 请下载Student版,先申请,然后会立马收到一 ...

  5. Intel MKL 多线程设置

    对于多核程序,多线程对于程序的性能至关重要. 下面,我们将对Intel MKL 有关多线程方面的设置做一些介绍: 我们提到MKL 支持多线程,它包括的两个概念:1>MKL 是线程安全的: MKL ...

  6. [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2

    之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...

  7. 【神经网络与深度学习】【C/C++】比较OpenBLAS,Intel MKL和Eigen的矩阵相乘性能

    比较OpenBLAS,Intel MKL和Eigen的矩阵相乘性能 对于机器学习的很多问题来说,计算的瓶颈往往在于大规模以及频繁的矩阵运算,主要在于以下两方面: (Dense/Sparse) Matr ...

  8. 容器内安装nvidia,cuda,cudnn

    /var/lib/docker/overlay2 占用很大,清理Docker占用的磁盘空间,迁移 /var/lib/docker 目录 du -hs /var/lib/docker/ 命令查看磁盘使用 ...

  9. NVIDIA Turing Architecture架构设计(上)

    NVIDIA Turing Architecture架构设计(上) 在游戏市场持续增长和对更好的 3D 图形的永不满足的需求的推动下, NVIDIA 已经将 GPU 发展成为许多计算密集型应用的世界领 ...

随机推荐

  1. HDU 1430 关系映射 + 打表 .

    题意是中文的不解释.(http://acm.hdu.edu.cn/showproblem.php?pid=1430) 思路:            这个题目直接BFS会超时的(我一开始超时了) ,如果 ...

  2. iwrite复制攻略

    打开iwrite,一提交作业,发现: 这可咋办啊! 那就跟着步骤来呗: 按F12打开元素审查 点一下左上角 再点一下文本框,就能定位到HTML中的位置 在文本框中写几个字母,康康具体位置: 那就复制进 ...

  3. 一起来看看java并发中volatile关键字的神奇之处

    并发编程中的三个概念: 1.原子性 在Java中,对基本数据类型的变量的读取和赋值操作是原子性操作,即这些操作是不可被中断的,要么执行,要么不执行. 2.可见性 对于可见性,Java提供了volati ...

  4. 浅谈持续集成(CI)、持续交付(CD)、持续部署(CD)

    CI/CD是实现敏捷和Devops理念的一种方法,具体而言,CI/CD 可让持续自动化和持续监控贯穿于应用的 整个生命周期(从集成和测试阶段,到交付和部署).这些关联的事务通常被统称为"CI ...

  5. 并发容器-CopyOnWriteArrayList

    并发容器一览 图源:https://time.geekbang.org/column/article/90201?utm_term=pc_interstitial_938 CopyOnWriteArr ...

  6. Python数模笔记-Sklearn(5)支持向量机

    支持向量机(Support vector machine, SVM)是一种二分类模型,是按有监督学习方式对数据进行二元分类的广义线性分类器. 支持向量机经常应用于模式识别问题,如人像识别.文本分类.手 ...

  7. 是时候学习Linux了

    前言: Linux是一个开源.免费的操作系统.其稳定性.安全性.处理多并发已经得到业界的认可,目前很多企业级的项目都会部署到Linux/unix系统上.如果你还不太了解Linux,希望本篇文章能够带你 ...

  8. FHE-Toolkit 安装

    什么是FHE-Toolkit? FHE-Toolkit-linux是用于Linux的IBM全同态加密工具包, 该工具包是一个基于Linux的Docker容器,可演示对加密数据的计算而无需解密, 该工具 ...

  9. 聊一聊 JVM 的 GC

    原文链接:https://www.changxuan.top/?p=1457 引言 JVM 中的 GC 在技术博客中应该算是个老生常谈的话题,网络上也存在着许多质量参差不齐的文章,可以看出来大都是&q ...

  10. copy和deep.copy

    https://blog.csdn.net/qq_32907349/article/details/52190796 加上crossin公众号上的可变对象与不可变对象 a=[1,2,3,[4]] b= ...