因为在一篇博文上看到介绍“汽车之家介绍flink数据平台”中提到“基于 SQL 的开发流程”。基于kafka connector,通过source,sink,transformation三条sql完成数据接入,逻辑转换处理,结果落地三步工作。出于兴趣,自己去简(粗)单(糙)实现了这其中的一个小功能。相关的博文在这里,相关的代码上传到github

简单说,通过kafka connector用3条sql实现如图所示功能:

但是实现的过程中也遇到了两个问题。

问题

  • 截止到目前最新的flink版本在kafka connector也只支持 inStreamingMode,并不支持inBatchMode。不能实现汽车之家通过kafka connector来实现每日的定时统计。

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/connectors/table/kafka/

如图,只支持unbounded无界数据流,不支持bounded有界数据即batchmode.

  • 在sink的时候是只支持append模式,而在append模式下,不支持group by,因为使用了group by 会改行结果行。

    那么按照汽车之家每日统计PV,UV的需求必然需要使用到group by.按目前flink的最新版本也是办不到的。

    如果强行使用group by 将会抛出异常:

    目前sink只支持append模式,如果使用了group by 等会改变结果行,会报错:AppendStreamTableSink doesn't support consuming update changes which is produced by node GroupAggregate

对于spark和flink这种绝对主流的大数据框架,稍微上点规模的公司应该都有维护自己的内部分支,基于自家的业务做一些定制化开发。汽车之家应该也不例外。

所以以上功能flink社区版不能做到,汽车之家应该是基于内部的实现。

以上是背景介绍。

基于该功能并不算特别复杂,花了两天业余时间实现了。

思路

  • kafka参数问题

    要接入kafka,就要设置kafka连接信息,起始信息,以及结束信息.

    开始信息可选参数如下:

    参数名 参数值
    scan.startup.mode 可选值:'earliest-offset', 'latest-offset', 'group-offsets', 'timestamp' and 'specific-offsets'
    scan.startup.specific-offsets 指定每个分区的偏移量,比如:'partition:0,offset:42;partition:1,offset:300'
    scan.startup.timestamp-millis 直接指定开始时间戳,long类型

    依葫芦画瓢,去除earliest-offset,结束信息可选参数可设置成:

    参数名 参数值
    scan.endup.mode 可选值:'latest-offset', 'group-offsets', 'timestamp' and 'specific-offsets'
    scan.endup.specific-offsets 指定每个分区的偏移量,比如:'partition:0,offset:42;partition:1,offset:300'
    scan.sendup.timestamp-millis 直接指定结束时间戳,long类型
  • 支持batchmode的问题

    这里涉及到一个版本的问题。flink kafka connector API在最近几个版本变化挺大的。就内部实现而言,1.13和1.14也有不小的变化。

    比如,判断当前任务是否有界时,1.13版本是直接写为false



    而在1.14版本变成了可动态判断并设置

    public boolean isBounded() { return kafkaSource.getBoundedness() == Boundedness.BOUNDED; }

    可以看到这里通过kafkaSource.getBoundedness()获取当前任务是否有界,点进KafkaSource,对于boundedness属性,既然有getter那必然有setter啊。

    果不其然,在KafkaSourceBuilder类中提供了setBounded方法。

    这里还有意外惊喜,这个方法不但提供了设置bounded的功能,还能直接设置结束的参数。那么上一个kafka参数问题解决了定义问题,而在这里就解决了设置的问题。

  • 参数提交至kafkasource的问题

    参数问题分为定义提交。定义在第1部份已经解决,提交就是第2部份的setBounded,但在哪里触发呢?

    KafkaDynamicSource.createKafkaSource的方法里。这里可仿照switch(startupMode)写一个switch(endupuMode),在里面的分支去实现各种参数情况LATEST,TIMESTAMP,再在各个分支里设置kafka参数。

    在case分支我们可以仿照kafkaSourceBuilder.setStartingOffsets实现一个kafkaSourceBuilder.setEndOffsets。在flink 1.13就得这么实现。但在flink 1.14,经过前面的分析得知setBounded可设置结束参数。一举两得。

  • group by支持问题

    经过分析,我发现这个问题属于是庸人自扰。

    AppendStreamTableSink doesn't support group by仅在streamingmode模式下,batchmode不存在改变结果行的问题,所以,只要改成了batchmode,天然的就不存在group by 异常问题。

实现

选定flink 1.14版本,fork,拉取到本地,新建分支。

目前scan.endup.mode 只支持latest-offsettimestamp两种方式。

编译

代码实现完毕,本地编译。

使用maven,常规操作。有两个注意的点:

  • flink使用了spotless进行代码格式化检测。修改了源码重新编译如果代码格式不对,可能就是没换行或者少了多了一个空格,就通过不了。

    编译前,可以使用'mvn spotless:apply自动校正。

  • flink 使用了Checkstyle,一些代码使用了import static,添加静态引入后进行编译时要注意。

测试

编译成功后,可部署成单点或者伪集群模式测试。

这里采用本地测试。

  • flink-connector-kafka_2.11-1.14.0.jarflink-connector-kafka_2.11-1.14.0.xmlpom文件手动放入或者mvn install本地仓库。
  • 我测试的时候,需手动引用kafka-clients依赖。这点我不保证。

确保将重新编译后的jar包引入项目

测试代码:

{
EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
.inBatchMode()
// .inStreamingMode()
.build(); TableEnvironment te = TableEnvironment.create(fsSettings); String kafkaSql = "CREATE TABLE kafkatable (\n" +
" key STRING," +
" ts TIMESTAMP" +
") WITH (\n" +
" 'connector' = 'kafka',\n" +
" 'topic' = 'xxx',\n" +
" 'properties.bootstrap.servers' = 'xxx.xx.xxx.xxx:9092',\n" +
" 'properties.group.id' = 'xxx',\n" +
// -- optional: valid modes are "earliest-offset",
// -- "latest-offset", "group-offsets",
// -- or "specific-offsets"
" 'scan.startup.mode' = 'earliest-offset',\n" +
" 'scan.endup.mode' = 'latest-offset',\n" +
// " 'scan.endup.mode' = 'timestamp',\n" +
// " 'scan.endup.timestamp-millis' = '1641974234163',\n" +
// " 'scan.endup.mode' = 'latest-offset',\n" +
// "'scan.startup.specific-offsets' = 'partition:0,offset:20'," +
// " 'connector.specific-offsets.0.partition' = '0',"+
// "'connector.specific-offsets.0.offset' = '1',"+
" 'format' = 'json',\n" +
" 'json.fail-on-missing-field' = 'false',\n" +
" 'json.ignore-parse-errors' = 'true'\n" +
")";
te.executeSql(kafkaSql); String sqlFile = "CREATE TABLE fs_table (\n" +
" dt VARCHAR,\n" +
" pv BIGINT,\n" +
" uv BIGINT" +
") WITH (\n" +
" 'connector'='filesystem',\n" +
" 'path'='d://path',\n" +
" 'format'='json',\n" +
" 'sink.partition-commit.delay'='1 s',\n" +
" 'sink.partition-commit.policy.kind'='success-file'\n" +
")";
te.executeSql(sqlFile); te.executeSql("INSERT INTO fs_table\n" +
"SELECT\n" +
" 'as' as dt,\n" +
" COUNT(*) AS pv,\n" +
" COUNT(DISTINCT key) AS uv\n" +
"FROM kafkatable group by key\n").print();
}

测试代码的sql逻辑仅为测试。不要追究为什么count(*)是pv,随手写的。

测试代码scan.endup.mode设置为latest-offset。如果要实现最开始的按天统计,如下设置。scan.startup.mode同理。

"  'scan.endup.mode' = 'timestamp',\n" +
" 'scan.endup.timestamp-millis' = '1641974234163',\n" +

这段代码测试通过inBatchMode引入kafka数据源,并将处理后的数据写入本地文件。

运行结果,测试通过。

《Flink SQL任务自动生成与提交》后续:修改flink源码实现kafka connector BatchMode的更多相关文章

  1. Flink SQL任务自动生成与提交

    目录 起因 思路 实现 1.配置 2.界面如下 3.环境 问题 起因 事情的起因,是看到一篇公众号文章Apache Flink 在汽车之家的应用与实践,里面提到了"基于 SQL 的开发流程& ...

  2. Excel 数据导入SQL XML 自动生成表头

    去出差的时候应客户要求要要将Excel 文件内的数据批量导入到数据库中,而且有各种不同种类的表格,如果每一个表格多对应一个数据表的话, 按照正常的方法应该是创建数据表,创建数据库中映射的数据模型,然后 ...

  3. Entity Framewrok 7beta7中不同版本sql server自动生成分页sql语句的问题

    在EF中,使用linq进行分页是很方便的,假如我们有一个EMP表,结构如下: public class Emp { [Key] public Guid No { get; set; } public ...

  4. Springboot+Redisson自定义注解一次解决重复提交问题(含源码)

    前言   项目中经常会出现重复提交的问题,而接口幂等性也一直以来是做任何项目都要关注的疑难点,网上可以查到非常多的方案,我归纳了几点如下:   1).数据库层面,对责任字段设置唯一索引,这是最直接有效 ...

  5. 学习 opencv---(6)玩转opencv源代码:生成opencv 工程解决方案与opencv 源码编译

    在这篇中,我们探讨如何通过已安装的opencv选择不同的编译器类型,生成高度还原的OpenCV开发时的解决方案工程文件,欣赏OpenCV新版本中总计 六十六多万行的精妙源代码.我们可以对其源代码进行再 ...

  6. Android 二维码 生成和识别(附Demo源码)

    今天讲一下目前移动领域很常用的技术——二维码.现在大街小巷.各大网站都有二维码的踪迹,不管是IOS. Android.WP都有相关支持的软件.之前我就想了解二维码是如何工作,最近因为工作需要使用相关技 ...

  7. 【转】Android 二维码 生成和识别(附Demo源码)--不错

    原文网址:http://www.cnblogs.com/mythou/p/3280023.html 今天讲一下目前移动领域很常用的技术——二维码.现在大街小巷.各大网站都有二维码的踪迹,不管是IOS. ...

  8. 【转载】Redis 4.0 自动内存碎片整理(Active Defrag)源码分析

    click原文链接原文链接:https://blog.csdn.net/zouhuajianclever/article/details/90669409阅读本文前建议先阅读此篇博客: Redis源码 ...

  9. Spring Framework自动装配setAutowireMode和Mybatis案例的源码探究

    由前文可得知, Spring Framework的自动装配有两种方式:xml配置和注解配置: 自动装配的类型有: (1)xml配置中的byType根据类型查找(@Autowired注解是默认根据类型查 ...

随机推荐

  1. 混沌映射初始化种群之Logistic映射

    Logstic混沌映射初始化种群 Step 1:     随机生成一个\(d\)维向量\({X_0}\),向量的每个分量在0-1之间. Step 2:     利用Logistic映射生成N个向量.L ...

  2. 【教程】OBS直播推流教程(Windows & macOS)

    OBS Open Broadcaster Software | OBS (obsproject.com) Windows直播推流教程 Windows下OBS直播推流非常简单,本教程将会介绍,具体步骤如 ...

  3. 制作ota差分包

    制作ota包 . build/envsetup.sh lunch [product] make -j8 make otapackage -j8 cp out/target/product/projec ...

  4. JAVA通过实体类生成数据库查询语句(驼峰命名规则)

    import java.io.IOException; import java.lang.reflect.Field; import java.util.HashMap; import java.ut ...

  5. SpringBoot整合quartz框架启动定时任务报错:the given trigger will never fire.

    org.quartz.SchedulerException: Based on configured schedule, the given trigger 'DEFAULT.cron_b1a91e1 ...

  6. c++基础之虚函数表指针和虚函数表创建时机

    虚函数表指针 虚函数表指针随对象走,它发生在对象运行期,当对象创建的时候,虚函数表表指针位于该对象所在内存的最前面. 使用虚函数时,虚函数表指针指向虚函数表中的函数地址即可实现多态. 虚函数表 虚函数 ...

  7. nanogui之更新子模块glfw3.3.2踩坑总结

    nanogui源码下载: A . https://github.com/wjakob/nanogui B . https://github.com/dalerank/nanogui B是fork的A, ...

  8. 定义Anroid SO崩溃位置

    E:\android-ndk-r13b\toolchains\arm-linux-androideabi-4.9\prebuilt\windows-x86_64\bin> arm-linux-a ...

  9. c++11之获取模板函数的参数个数和函数返回值类型

    本文演示c++需要支持c++11及以上标准 获取参数个数 1.模板函数声明 template <class R, class... Args> R getRetValue(R(*)(Arg ...

  10. null和空字符串对于查询where条件语句的影响

    在数据库中我们进行数据处理的过程中,对于null值或者空字符串的情况对于这种数据我们进行计算平均值以及查询过程中如何进行对于这类数据的处理呢? step1:建表:create table a(id i ...