队列(Queue),是一种数据结构。除了优先级队列和LIFO队列外,队列都是以FIFO(先进先出)的方式对各个元素进行排序的。

BlockingQueue

而阻塞队列BlockingQueue除了继承队列的所有方法外,还分别新增了支持阻塞的插入(put)和移除(take)方法。

下面我们分别看下JDK提供的七个阻塞队列

ArrayBlockingQueue

ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。

看一下它的构造方法

/**
* Creates an {@code ArrayBlockingQueue} with the given (fixed)
* capacity and the specified access policy.
*
* @param capacity the capacity of this queue
* @param fair if {@code true} then queue accesses for threads blocked
* on insertion or removal, are processed in FIFO order;
* if {@code false} the access order is unspecified.
* @throws IllegalArgumentException if {@code capacity < 1}
*/
public ArrayBlockingQueue(int capacity, boolean fair) {
if (capacity <= 0)
throw new IllegalArgumentException();
this.items = new Object[capacity];
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
}

  默认的构造方法是不保证线程公平的访问队列,所谓公平访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,即先阻塞线程先访问队列。

非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才访问队列。为了保证公平性,通常会降低吞吐量。

第15行 lock = new ReentrantLock(fair); 可以看出阻塞队列的公平性也是通过ReentrantLock的公平锁实现的,

第16行和第17行,我们又看到熟悉的 lock.newCondition(),在之前的一篇博客《java多线程6:ReentrantLock》中,说到使用condition可以实现等待/通知模型,

也不难理解,如果想要实现支持阻塞的插入(put)和移除(take)方法,就可以通过condition实现线程间的通信。

LinkedBlockingQueue

LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

offer(E e): 如果队列满了,立即返回false,如果队列没满,立即返回true

put(E e):如果队列满了,一直阻塞,直到队列不满了或者线程被中断

offer(E e, long timeout, TimeUnit unit):在队尾插入一个元素,如果队列已满,则进入等待,直到出现以下三种情况:被唤醒、等待时间超时、当前线程被中断

poll():如果没有元素,直接返回null;如果有元素,出队

take():如果队列有值,返回取出的值,如果队列空了,一直阻塞,直到队列不为空或者线程被中断

poll(long timeout, TimeUnit unit):如果队列不空,出队;如果队列已空且已经超时,返回null;

如果队列已空且时间未超时,则进入等待,直到出现以下三种情况:被唤醒、等待时间超时、当前线程被中断

总结:LinkedBlockingQueue是允许两个线程同时在两端进行入队或出队的操作的,但一端同时只能有一个线程进行操作,这是通过两把锁来区分的;

为了维持底部数据的统一,引入了AtomicInteger的一个count变量,表示队列中元素的个数。

count只能在两个地方变化,一个是入队的方法(可以+1),另一个是出队的方法(可以-1),而AtomicInteger是原子安全的,所以也就确保了底层队列的数据同步。

PriorityBlockingQueue

PriorityBlockingQueue是一个支持优先级的无界阻塞队列。默认情况下元素采取自然顺序升序排列。

也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。

需要注意的是不能保证同优先级元素的顺序。

DelayQueue

DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。

队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。

使用场景:

  订单系统,对于30分钟内未支付的订单自动取消

  缓存系统,可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了

  定时任务,使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,比如TimerQueue就是使用DelayQueue实现的

SynchronousQueue

SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。

/**
* Creates a {@code SynchronousQueue} with the specified fairness policy.
*
* @param fair if true, waiting threads contend in FIFO order for
* access; otherwise the order is unspecified.
*/
public SynchronousQueue(boolean fair) {
transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
}

1、公平模式:TransferQueue

采用公平锁,并配合一个FIFO队列(Queue)来管理多余的生产者和消费者

2、非公平模式:TransferStack

采用非公平锁,并配合一个LIFO栈(Stack)来管理多余的生产者和消费者,这也是SynchronousQueue默认的模式

LinkedTransferQueue

LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻塞队列,LinkedTransferQueue多了tryTransfer和transfer方法。

(1)transfer方法如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。

如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码如下。

(2)tryTransfer方法tryTransfer方法是用来试探生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回false。

和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回,而transfer方法是必须等到消费者消费了才返回。

LinkedBlockingDeque

LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的是可以从队列的两端插入和移出元素。

双向队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,

LinkedBlockingDeque多了addFirst、addLast、offerFirst、offerLast、peekFirst和peekLast等方法,

以First单词结尾的方法,表示插入、获取(peek)或移除双端队列的第一个元素。

以Last单词结尾的方法,表示插入、获取或移除双端队列的最后一个元素。

另外,插入方法add等同于addLast,移除方法remove等效于removeFirst。

但是take方法却等同于takeFirst,不知道是不是JDK的bug,使用时还是用带有First和Last后缀的方法更清楚。

在初始化LinkedBlockingDeque时可以设置容量防止其过度膨胀。另外,双向阻塞队列可以运用在“工作窃取”模式中。

Fork/Join框架

RecursiveAction:用于没有返回结果的任务。

RecursiveTask:用于有返回结果的任务。

我们看一下如何用Fork/Join框架实现计算 1+2+3+...+100

public class CountTask extends RecursiveTask<Integer> {
// 阈值,设置每个子任务将执行多少计算任务
private static final int THRESHOLD = 2;
private int start;
private int end; public CountTask(int start, int end) {
this.start = start;
this.end = end;
} /**
* The main computation performed by this task.
*
* @return the result of the computation
*/
@Override
protected Integer compute() {
int sum = 0;
if (end - start > THRESHOLD) {
int mid = (start + end) / THRESHOLD;
CountTask leftTask = new CountTask(start, mid);
CountTask rightTask = new CountTask(mid + 1, end);
// 执行子任务
leftTask.fork();
rightTask.fork();
// 获取子任务执行结果
Integer leftSum = leftTask.join();
Integer rightSum = rightTask.join();
sum = leftSum + rightSum; } else {
for (int i = start; i <= end; i++) {
sum += i;
}
}
return sum;
} public static void main(String[] args) {
ForkJoinPool forkJoinPool = new ForkJoinPool();
CountTask countTask = new CountTask(1, 100); ForkJoinTask<Integer> submit = forkJoinPool.submit(countTask); try {
System.out.println(submit.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}

  ForkJoinTask与一般任务的主要区别在于它需要实现compute方法,在这个方法里,首先需要判断任务是否足够小,如果足够小就直接执行任务。

如果不足够小,就必须分割成两个子任务,每个子任务在调用fork方法时,又会进入compute方法,看看当前子任务是否需要继续分割成子任务,

如果不需要继续分割,则执行当前子任务并返回结果。使用join方法会等待子任务执行完并得到其结果。

参考文献

1:《Java并发编程的艺术》

java多线程8:阻塞队列与Fork/Join框架的更多相关文章

  1. Java多线程_阻塞队列

    1.什么是阻塞队列       我们知道,PriorityQueue.LinkedList这些都是非阻塞队列.在我们使用非阻塞队列的时候有一个很大问题,它不会对当前线程产生阻塞,那么在面对类似消费者- ...

  2. Java 7 Fork/Join 框架

    在 Java7引入的诸多新特性中,Fork/Join 框架无疑是重要的一项.JSR166旨在标准化一个实质上可扩展的框架,以将并行计算的通用工具类组织成一个类似java.util中Collection ...

  3. Java 并发编程 -- Fork/Join 框架

    概述 Fork/Join 框架是 Java7 提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架.下图是网上流传的 Fork Join 的 ...

  4. Fork/Join 框架

    本文部分摘自<Java 并发编程的艺术> Fork/Join 框架概述 Fork/Join 框架是 Java7 提供的一个用于并行执行任务的框架,是把一个大任务分割成若干个小任务,最终汇总 ...

  5. 多线程编程学习六(Java 中的阻塞队列).

    介绍 阻塞队列(BlockingQueue)是指当队列满时,队列会阻塞插入元素的线程,直到队列不满:当队列空时,队列会阻塞获得元素的线程,直到队列变非空.阻塞队列就是生产者用来存放元素.消费者用来获取 ...

  6. Fork/Join 框架-设计与实现(翻译自论文《A Java Fork/Join Framework》原作者 Doug Lea)

    作者简介 Dong Lea任职于纽约州立大学奥斯威戈分校(State University of New York at Oswego),他发布了第一个广泛使用的java collections框架实 ...

  7. Java并发编程(07):Fork/Join框架机制详解

    本文源码:GitHub·点这里 || GitEE·点这里 一.Fork/Join框架 Java提供Fork/Join框架用于并行执行任务,核心的思想就是将一个大任务切分成多个小任务,然后汇总每个小任务 ...

  8. Java并发——Fork/Join框架

    为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/4631466. ...

  9. 《java.util.concurrent 包源码阅读》22 Fork/Join框架的初体验

    JDK7引入了Fork/Join框架,所谓Fork/Join框架,个人解释:Fork分解任务成独立的子任务,用多线程去执行这些子任务,Join合并子任务的结果.这样就能使用多线程的方式来执行一个任务. ...

随机推荐

  1. WebRTC打开本地摄像头

    本文使用WebRTC的功能,打开电脑上的摄像头,并且把摄像头预览到的图像显示出来. 纯网页实现,能支持除IE外的多数浏览器.手机浏览器也可用. 引入依赖 我们需要引入adapter-latest.js ...

  2. docker 启动报错:Docker.Core.Backend.BackendException: Error response from daemon: open \\.\pipe\docker_e

    win10 docker启动后报错: Docker.Core.Backend.BackendException:Error response from daemon: open \\.\pipe\do ...

  3. idea插件 Background Image Plus 随机更换背景图片

    首先在市场搜索: Background Image Plus 设置图片: 在view中,有set 图片,有random图片,有clean图片的 设置就是用set,随便设置个路径. 重点来了,随机更换背 ...

  4. Jmeter——变量嵌套函数使用(__V)案例分析

    jmeter版本:5.3 __V官方函数解释: (https://jmeter.apache.org/usermanual/functions.html#__V) 图1-1 解决问题:实现字符串拼接 ...

  5. CF708E Student's Camp

    麻麻我会做*3100的计数了,我出息了 考虑朴素DP我们怎么做呢. 设\(f_{i,l,r}\)为第\(i\)层选择\(l,r\)的依旧不倒的概率. \(q(l,r)\)表示经历了\(k\)天后,存活 ...

  6. LOJ 2353 & 洛谷 P4027 [NOI2007]货币兑换(CDQ 分治维护斜率优化)

    题目传送门 纪念一下第一道(?)自己 yy 出来的 NOI 题. 考虑 dp,\(dp[i]\) 表示到第 \(i\) 天最多有多少钱. 那么有 \(dp[i]=\max\{\max\limits_{ ...

  7. 洛谷 P7879 -「SWTR-07」How to AK NOI?(后缀自动机+线段树维护矩乘)

    洛谷题面传送门 orz 一发出题人(话说我 AC 这道题的时候,出题人好像就坐在我的右侧呢/cy/cy) 考虑一个很 naive 的 DP,\(dp_i\) 表示 \([l,i]\) 之间的字符串是否 ...

  8. Atcoder Grand Contest 038 F - Two Permutations(集合划分模型+最小割)

    洛谷题面传送门 & Atcoder 题面传送门 好久前做的题了--今天偶然想起来要补个题解 首先考虑排列 \(A_i\) 要么等于 \(i\),要么等于 \(P_i\) 这个条件有什么用.我们 ...

  9. python-django-分页处理

    每个模型都有一个管理器,Manager 通过分页可以先加载一部分的数据内容,然后避免大量的查询带来的等待时间 应用场景是,排行榜,前十条或者 for i in range(100): ...: ... ...

  10. Linux—Linux系统目录结构

    登录系统后,在当前命令窗口下输入命令:  ls /  你会看到如下图所示: 树状目录结构: 以下是对这些目录的解释: /bin:bin是Binary的缩写, 这个目录存放着最经常使用的命令. /boo ...