mysql为什么用b+树做索引
关键字就是key的意思
一、B-Tree的性质
1、定义任意非叶子结点最多只有M个儿子,且M>2;
2、根结点的儿子数为[2, M];
3、除根结点以外的非叶子结点的儿子数为[M/2, M];
4、每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5、非叶子结点的关键字个数=指向儿子的指针个数-1;
6、非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7、非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8、所有叶子结点位于同一层;
二、B+Tree
B+树的性质(下面提到的都是和B树不相同的性质)
1、非叶子节点的子树指针与关键字个数相同;
2、非叶子节点的子树指针p[i],指向关键字值属于[k[i],k[i+1]]的子树.(B树是开区间,也就是说B树不允许关键字重复,B+树允许重复);
3、为所有叶子节点增加一个链指针;
4、所有关键字都在叶子节点出现(稠密索引). (且链表中的关键字恰好是有序的);
5、非叶子节点相当于是叶子节点的索引(稀疏索引),叶子节点相当于是存储(关键字)数据的数据层;
6、更适合于文件系统;
三、为什么说B+树比B树更适合数据库索引
1、 B+树的磁盘读写代价更低:B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了。
2、B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
3、由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。
四、提升效率
B树在提高了IO性能的同时并没有解决元素遍历的我效率低下的问题,正是为了解决这个问题,B+树应用而生。B+树只需要去遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作或者说效率太低。
查找数据,最简单的方式是顺序查找。但是对于几十万上百万,甚至上亿的数据库查询就很慢了。
所以要对查找的方式进行优化,熟悉的二分查找,二叉树可以把速度提升到O(log(n,2)),查询的瓶颈在于树的深度,最坏的情况要查找到二叉树的最深层,由于,每查找深一层,就要访问更深一层的索引文件。在多达数G的索引文件中,这将是很大的开销。所以,尽量把数据结构设计的更为‘矮胖’一点就可以减少访问的层数。在众多的解决方案中,B-/B+树很好的适合。B-树定义具体可以查阅,简而言之就是中间节点可以多余两个子节点,而且中间的元素可以是一个域。相比B-树,B+树的父节点也必须存在于子节点中,是其中最大或者最小元素,B+树的节点只存储索引key值,具体信息的地址存在于叶子节点的地址中。这就使以页为单位的索引中可以存放更多的节点。减少更多的I/O支出。因此,B+树成为了数据库比较优秀的数据结构,MySQL中MyIsAM和InnoDB都是采用的B+树结构。不同的是前者是非聚集索引,后者主键是聚集索引,所谓聚集索引是物理地址连续存放的索引,在取区间的时候,查找速度非常快,但同样的,插入的速度也会受到影响而降低。聚集索引的物理位置使用链表来进行存储。
mysql为什么用b+树做索引的更多相关文章
- 2020-05-18:MYSQL为什么用B+树做索引结构?平时过程中怎么加的索引?
福哥答案2020-05-18:此答案来自群员:因为4.0成型那个年代,B树体系大量用于文件存储系统,甚至当年的Longhorn的winFS都是基于b树做索引,开源而且好用的也就这么个体系了.B+树的磁 ...
- MySQL用B+树(而不是B树)做索引的原因
众所周知,MySQL的索引使用了B+树的数据结构.那么为什么不用B树呢? 先看一下B树和B+树的区别. B树 维基百科对B树的定义为"在计算机科学中,B树(B-tree)是一种树状数据结构, ...
- 为什么Mysql用B+树做索引而不用B-树或红黑树
B+树做索引而不用B-树 那么Mysql如何衡量查询效率呢?– 磁盘IO次数. 一般来说索引非常大,尤其是关系性数据库这种数据量大的索引能达到亿级别,所以为了减少内存的占用,索引也会被存储在磁盘上. ...
- redis为何单线程 效率还这么高 为何使用跳表不使用B+树做索引(阿里)
如果想了解 redis 与Memcache的区别参考:Redis和Memcache的区别总结 阿里的面试官问问我为何redis 使用跳表做索引,却不是用B+树做索引 因为B+树的原理是 叶子节点存储数 ...
- MySQL用B+树做索引
索引这个词,相信大多数人已经相当熟悉了,很多人都知道MySQL的索引主要以B+树为主,但是要问到为什么用B+树,恐怕很少有人能把前因后果讲述的很完整.本文就来从头到尾介绍下数据库的索引. 索引是一种数 ...
- 为什么用B+树做索引&MySQL存储引擎简介
索引的数据结构 为什么不是二叉树,红黑树什么的呢? 首先,一般来说,索引本身也很大,不可能全部存在内存中,因此索引往往以索引文件的方式存在磁盘上.然后一般一个结点一个磁盘块,也就是读一个结点要进行一次 ...
- MySQL InnoDB引擎B+树索引简单整理说明
本文出处:http://www.cnblogs.com/wy123/p/7211742.html (保留出处并非什么原创作品权利,本人拙作还远远达不到,仅仅是为了链接到原文,因为后续对可能存在的一些错 ...
- 用漫画的形式来讲解为什么MySQL数据库要用B+树存储索引?
小史是一个应届生,虽然学的是电子专业,但是自己业余时间看了很多互联网与编程方面的书,一心想进BAT互联网公司. 话说两个多月前,小史通过了A厂的一面,两个多月后的今天,小史终于等到了A厂的二面. 简单 ...
- 为什么Mysql的常用引擎都默认使用B+树作为索引?
一.前言 为了讲清楚这个问题,我们要先了解什么是索引. 我记得刚刚学习数据库的时候,老师喜欢用书本的目录来类比数据库的索引,并告诉我们索引能够像目录一样,让我们更快地找到想要找到的数据. 如果是第一次 ...
随机推荐
- Spring Boot WebFlux-02——WebFlux Web CRUD 实践
第02课:WebFlux Web CRUD 实践 上一篇基于功能性端点去创建一个简单服务,实现了 Hello.这一篇用 Spring Boot WebFlux 的注解控制层技术创建一个 CRUD We ...
- 想自己写框架?不了解Java注解机制可不行
无论是在JDK还是框架中,注解都是很重要的一部分,我们使用过很多注解,但是你有真正去了解过他的实现原理么?你有去自己写过注解么? 概念 注解(Annotation),也叫元数据.一种代码级别的说明.它 ...
- SpringBoot 结合 Spring Cache 操作 Redis 实现数据缓存
系统环境: Redis 版本:5.0.7 SpringBoot 版本:2.2.2.RELEASE 参考地址: Redus 官方网址:https://redis.io/ 博文示例项目 Github 地址 ...
- STM32学习笔记-NVIC中断知识点
STM32学习笔记-NVIC中断知识点总结 中断优先级设置步骤 1. 系统运行后先设置中断优先级分组 函数:void NVIC_PriorityGroupConfig(uint32_tNVIC_Pri ...
- [Linux]经典面试题 - 系统管理 - 备份策略
[Linux]经典面试题 - 系统管理 - 备份策略 目录 [Linux]经典面试题 - 系统管理 - 备份策略 一.备份目录 1.1 系统目录 1.2 服务目录 二.备份策略 2.1 完整备份 2. ...
- RobotFramework + Python 自动化入门 二 (关键字)
在<RobotFramwork + Python 自动化入门 一>中,完成了Robot环境搭建及测试脚本的创建和执行. 本节,对RobotFramework的关键字使用和查看源码进行介绍. ...
- el-upload上传列表实现 展开 收起
# el-upload上传列表实现 展开 收起 #### 无图言*,所以先上最终效果图(想参考代码的可以直接滑到最后) ### 具体实现思路 注意: 每个人的项目环境以及需求,都不尽相同,所以这里仅仅 ...
- 温故知新,CSharp遇见字符串比较(String Comparison),更佳科学的比较字符串
背景 在C#中,我们经常会遇到需要比较字符串的场景,有时候甚至因为外部输入的不确定性,我们需要忽略大小写来进行比较,以达到判断业务的述求. 对字符串用法的建议 使用.NET进行开发时,请遵循以下简要建 ...
- 9.4、安装zabbix(2)
8.从节点安装: (1)安装zabbix-agent: 1)下载zabbix-agent并安装: mkdir -p /tools/ cd /tools/ wget https://mirrors.tu ...
- 1、mysql基础入门(2)
1.4.常用非关系型数据库产品介绍: 1.Memcached(key-value)数据库: